Final Exam Summer

Course Name: Operation Research

Submitted By:
Abdul Razzaq (12938)
BS (SE-8) Section: A

Submitted To:
Sir Saifullah Jan

Dated: 24 September 2020

Department of Computer Science, IQRA National University, Peshawar Pakistan

IQRA NATIONAL UNIVERSITY

Computer Science Department
Summer-2020
Subject: Operation Research Time Allowed: 4 hours
Instructor: Saifullah Jan

Q 1: Using simplex method, solve the following linear programming problem.

$$
\begin{aligned}
& 5 x_{1}+4 x_{2}+3 x_{3}=8 \\
& 2 x_{1}+7 x_{2}+5 x_{3}=5 \\
& 4 x_{1}+4 x_{2}+2 x_{3}=4
\end{aligned}
$$

Answer:

Step 3 . Eliminate x_{3} from all equation above it subtract from $2^{\text {nd }}$
$5 x_{1}+4 x_{2}+3 x_{3}=8$
$-8 x_{1}-3 x_{2}=-5$
$2 x_{1}+2 x_{2}+x_{3}=2$
*) Slutiply the $3^{\text {rd }}$ equation by three and Substract from the first;

$|$| $-x_{1}-2 x_{1}=2$ |
| :--- |
| $-8 x_{1}-3 x_{2}=-5$ |
| $2 x_{1}+2 x_{2}+x_{3}=2$ |

*) Step 4. Temporarily strike out the Last equation and the last variable

$$
\left\{\begin{array}{l}
-x_{1}-2 x_{2}=2 \\
-8 x_{1}-3 x_{2}=-5 \\
2 x_{1}+2 x_{2}+x_{3}=2
\end{array}\right.
$$

Now proceed by steps 1-3 to deal with. smaller system. x the second equation by $1 / 3$

$$
\left\{\begin{array}{l}
-x_{1}-2 x_{2}=2 \\
+8 / 3 x_{1}+x_{2}=5 / 3 \\
2 x_{1}+2 x_{2}+x_{3}=2
\end{array}\right.
$$

Multiply the second equation by 2 , and add to the first

$$
\left\{\begin{array}{l}
13 / 3 x_{1}=16 / 3 \\
8 / 3 x_{1}+x_{2}=5 / 3 \\
2 x_{1}+2 x_{2}+x_{3}=2
\end{array}\right.
$$

*) Step 5 . Strike out the second equation

$$
\left\{\begin{array}{l}
13 / 3 x_{1}=16 / 3 \\
8 / 3 x_{1}+x_{2}=5 / 3 \\
2 x_{1}+2 x_{2}+x_{3}=2
\end{array}\right.
$$

Multiply the first equation by $3 / 3$

$$
\left\lvert\, \begin{aligned}
& x_{1}=(1 b / 13) \\
& \left.\left(8 / 3 x_{1}\right)+x_{2}\right)=(5 / 3) \\
& 2 x_{1}+2 x_{2}+x_{3}=2
\end{aligned}\right.
$$

Step b. Eliminate all coefficients below the main diagonal. Multiply the first equation by 8β and subtract from $2^{\text {nd }}$ eq

$$
\begin{aligned}
x_{1} & =(1 t / 13) \\
x_{2} & =(-21 / 13 \\
2 x_{1}+2 x_{2}+x_{3} & =2
\end{aligned}
$$

Multiply the first eq by 2 , subtract from third.

$$
\left\{\begin{aligned}
x_{1} & =(16 / 13) \\
x_{2} & =(-2 / / 13) \\
2 x_{2}+x_{3} & =(-6 / 13)
\end{aligned}\right.
$$

Multiply the second eq 2 , subtract from third.

$$
\left\{\begin{aligned}
x_{1} & =(16 / 13) \\
x_{2} & =(-21 / 13) \\
x_{3} & =(36 / 13)
\end{aligned}\right.
$$

Solution is complete.

Q 2: Use Vogel's approximation method, to solve the following.

Origin	Destination			Supply
	1	2	3	110
1	50	100	100	160
2	200	300	200	150
3	100	200	300	
Demand	140	200	80	

Answer:

Q2: AnswER:-
If VAM is applied to this problem one obtains the accompanying vogul numbers

Row

1) $100\left(C_{12}\right)-50\left(C_{11}\right)=50$
2) $200\left(C_{23}\right)-200\left(C_{21}\right)=0$
3) $200\left(C_{32}\right)-100\left(C_{31}\right)=100$

Column 1) $100\left(C_{31}\right)-(50)\left(c_{11}\right)=50$
2) $200\left(c_{32}\right)-100\left(c_{12}\right)=100$
3) $200\left(C_{23}\right)-100\left(C_{13}\right)=100$

Since three vogul numbers are tried for the maximum of 100 , arbitrarily select the first in the List and assign 140 trucks to x_{31}. Note that subscript ' 31 " is based on the Lowest cost in Row 3, or C_{31}. The value of " 140 " is determined using the equation.
$X_{i j}=\min \left(\delta_{i}, d j\right)$ i where $S_{i} ;$ supply from source i and d_{j}; demand from destination J, that is minimum number of 150 and 140 . In the next pass, column 1 is ignored and the vogul number of the column 2 and 3 remain unchanged.

Row :

$$
\begin{aligned}
& 1: 100\left(c_{13}\right)-100\left(c_{12}\right)=0 \\
& 2: 300\left(c_{22}\right)-200\left(c_{23}\right)=100 \\
& 3: 300\left(c_{33}\right)-200\left(c_{32}\right)=100
\end{aligned}
$$

Column:
2) $=100$
3) $=100$

Abitrarly selecting the first 100 in the List (Row 2) results in an assignment of 80 trucks from origin 2 to destination $3\left(x_{23}=80\right)$. Since all but one of the column constraints have now been. Satisfied, all the remaing trucks at origins 1,2,3 must be assigned to destination and the hitial solution is;

$$
\begin{aligned}
& x_{12}=110 \\
& x_{22}=80 \\
& x_{23}=80 \\
& x_{31}=140 \\
& x_{32}=10 \\
& z=\$ 67,000
\end{aligned}
$$

Q 3: For the figure given below, use dynamic programming approach to find out the shortest possible path?

Answer:

Starting from P, consider the problem in stages:
First: \quad Q, R or S ?
Second: $\quad T, U$ or V ?
Third: $\quad W, X$ or Y ?
Final: Best route to Z ?

First stage: It is not yet known whether the quickest route lies through Q, but if it does the quickest route from P to Q is obviously $P Q$. Similar statements about getting to R and to S are equally obvious. Thus P to $Q=3$ and $\quad P$ to $R=1$ and P to $S=3$ by the shortest and only rout

Second stage: It is not yet known whether the quickest route lies through T, but if it does, would it have gone through Q, R or S ? Now the route PQT takes $3+7=10$, PRT takes $1+8=9$ and PST takes $3+4=7$. Therefore the quickest way to T is through S , though T is completely inaccessible, once the overall quickest route is known.

It is not yet known whether the quickest route lies through U rather than T. But if it does, would it have gone through Q, R or S ? Now the route PQU takes $3+6=9$, PRU takes $1+5=6$ and PSU takes $3+4=7$.

Therefore the quickest way to U is through R, though U is completely inaccessible, once the overall quickest route is known. To finish the second stage, it is not yet known whether the quickest route lies through V rather than T or U . But if it does, would it have gone through Q, R or S ? Now the route PQV takes $3+5=8$, PRV takes
$1+7=8$ also, and PSV takes $3+6=9$. Therefore the quickest way to V is through either Q or R , though V is still inaccessible, once the overall quickest route is known.

Thus $\quad \mathrm{P}$ to $\mathrm{T}=7$ and P to $\mathrm{U}=6$ and $\quad \mathrm{P}$ to $\mathrm{V}=8$ by the quickest route

Third stage: It is not yet known whether the quickest route lies through W , but if it does, would it have gone through T, U or V? Now the route PTW takes $7+7=14$ if T is
reached by the quickest route; PUW takes $6+9=15$ if U is reached by the quickest route; PVW takes $8+8=16$ if V is reached by the quickest route. Therefore the quickest way to W is through T , provided that T itself was reached in the quickest way (through S). W, T or S are completely inaccessible, once the overall quickest route is known.

It is not yet known whether the best route lies through X rather than W. But if it does, would it have gone through T, U or V ? Now the route PTX takes $7+5=12$ if T is reached by the quickest route; PUX takes $6+7=13$ if U is reached by the quickest route; PVX takes $8+7=15$ if V is reached by the quickest route. Therefore the quickest way to X is through T, provided that T itself was reached in the quickest way (through). X, T or S are still not accessible once the overall quickest route is known.

To finish the third stage, it is not yet known whether the best route lies through Y rather than W or X . But if it does, would it have gone through T, U or V ? Now the route PTY takes $7+11=18$ if T is reached by the quickest route; PUY takes $6+11=$ 17 if U is reached by the quickest route; PVY takes $8+10=18$ if V is reached the quickest route. Therefore the quickest way to Y is through U, provided that U itself was reached in the quickest way (through R). Y, U, or R are still not accessible once the overall quickest route is known.

Thus

$$
P \text { to } W=14 \text { and } \quad P \text { to } X=12 \text { and } \quad P \text { to } Y=17 \text { by the quickest route. }
$$

Final stage: The quickest route from P to Z can now be calculated, P to W by the quickest route and on to Z takes $14+3=17 ; P$ to X by the quickest route and on to Z takes $12+4=16 ; P$ to Y by the quickest route and on to Z takes $17+1=18$. Therefore the quickest route from P to Z takes 16 .

Trace the steps back through the network and determine which intermediate cities lie on the quickest route from P to Z. The final stage of the calculation indicates that X does. This implies (from the third stage) that T also does, since the quickest route from P to X is through T. This in turn implies (from the second stage) that S also is on the quickest route from P to Z, since the quickest route from P to T is through S.

The quickest route, therefore, runs from P through S, T and X to Z, taking a total time of 16 . This is also the quickest route from Z to P.

Q 4: A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B.
At the start of the current week there are 30 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.
The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 units. Company policy is to maximize the combined sum of the units of X and the units of Y in stock at the end of the week.
Formulate the problem of deciding how much of each product to make in the current week as a linear program.

Q4) A ROWER:-
Let
$x x$ be the number of units of x produced in the current week
*) y be the number of units of y produced in the current week
\rightarrow Constraints are
$\rightarrow 50 x+24 y \Leftrightarrow(60)$ machine A time $\rightarrow 30 x+33 y \Leftrightarrow(60)$ machine B time.

$$
\rightarrow x \Rightarrow 75-30
$$

i.e
$x \Rightarrow 45$ so production of $x>=$ demand (75) -initial Stock (30), which ensure we meet demands

$$
\text { i.e } \rightarrow y>=95-90
$$

$y>=5$ so production of $y>=\operatorname{demand}(95)$ - intial stock (90), which ensure we meet demand

The objective is maximise $(x+30-75)+(y+90-95)$

$$
=(x+y-50)
$$

i.e

The maximise number of units deft in stock at the end of the week

Q 5: The ICARE Company has three plants located throughout a state with production capacity 50,75 and 25 gallons. Each day the firm must furnish its four retail shops R1, R2, R3, \& R4 with at least 20, 20, 50, and 60 gallons respectively. The transportation costs (in Rs.) are given below.

	Retail				Supply
Company	R1	R2	R3	R4	
P1	3	5	7	6	50
P2	2	5	8	2	75
P3	3	6	9	2	25
Demand	20	20	50	60	

The economic problem is to distribute the available product to different retail shops in such a way so that the total transportation cost is minimum?

Q5) Solution:-
Starting from the north west corner, we allocate $\min (50,20)$ to $P_{1} R_{1}$, i.e., 20 units to cell $P_{1} R_{1}$
The demand for the first column is satisfied. The allocation is shown in the Following table.

Company	R_{1}	R_{2}	R_{3}	R_{4}	Supply
P_{1}	3	$3^{(20)}$	50	710	6
P_{2}	2	5	8	20	
P_{3}	3	6	9	$25)$	75
Demand	20	20	50	60	

Now we move horizontally to the second column in the first bow and allocate 20 units to cell $P_{1} R_{2}$. The demand of second column is also satisfied. proceeding in this way, we observe that $P_{1} R_{2}=10$, $P_{2} R_{3}=40, P_{2} R_{4}=35, P_{3} R_{4}=25$. The resulting feasible Solution is shown in the following table Here, number of retail shops $(n)=4$, and Number of plants $f m=3$. Number of variables $=m+n-1$

$$
=3+4-1 \Rightarrow 6 \text {. }
$$

\rightarrow The initial basic feasible Solution is $x_{11}=20, x_{12}=5$, $x_{13}=20, x_{23}=40, x_{24}=25$ and minimum cost $\begin{aligned} \text { of transportation } & =20 \times 3+20 \times 5+10 \times 7+40 \times 8+35 \times 2+25 \times 2 \\ & =670\end{aligned}$

$$
=670
$$

