ID:14269

NAME:Qazibilal

Semester: $\mathbf{5}^{\text {th }}$

Time: 6 Hours 9 AM-3 PM
Total Marks: 50
Instructor: Aasma Khan
Date: $\mathbf{2 2}^{\text {nd }}$ June, 2020

Note: Attempt all Questions.

Question No. 1:

Explain objectives of NLP? Write the name of 2 Applications of NLP with example? Write the name of 2 Challenges of NLP with example?

ANS:

NLP

Natural Language Processing, usually shortened as NLP, is a branch of artificial intelligence that deals with the interaction between computers and humans using the natural language.

OBLECTIVES OF NLP

The ultimate objective of NLP is to read, decipher, understand, and make sense of the human languages in a manner that is valuable. Most NLP techniques rely on machine learning to derive meaning from human languages.

Applications of NLP

The following are the 2 applications of NLP

1) Machine translation
2) Spoken dialog system

Machine Translation

- Translating a text from one language to another

Google

Translate a

Spoken dialog systems

- Running a dialog between the user and the system

IBM Watson Developer Cloud

Challenges of NLP

The following are the 2 challenges of NLP

1) Paraphrasing
2) Ambiguity

Paraphrasing

- Different words/sentences express the same meaning
- Season of the year
- Fall
- Autumn
- Book delivery time
- When will my book arrive?
- When will I receive my book?

Ambiguity

- One word/sentence can have different meanings
- Fall
- The third season of the year
- Moving down towards the ground or towards a lower position
- The door is open.
- Expressing a fact
- A request to close the door

Specify the text strings using the below regular expressions:
a. $/ \mathrm{a}(\mathrm{bc})$

- Given string: ab abc ac acb a0b a2b a42c A87d

ANS:

$$
a b \text { abc ac acb aOb a2b a42c A87d }
$$

b. /[abc]

- Given string: ab abc ac acb a0b a2b a42c A87d

ANS:

c. /abc+

- Given string: ab abc abcc babc

ANS:
: $a b$ abc $a b c c$ babc
d. /abc*

- Given string: ab abc abcc babc

ANS:
$a b$ abc abcc babc
e. /[^a-z A-Z 0-9]

- Given string: a89 opx cfff \$1!

ANS:
a89 opx cfff \$1!

Question No. 3:
a) Design an NFA over an alphabet $\sum=\{a, b\}$ such that every string accepted must end with a string --ba. Identify its tuples and also convert it into DFA.

b) Design an NFA for the regular expression : a* b(a+b)*

Question No. 4:
a) Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.

POS Tagging:

It is a process of converting a sentence to forms - list of words, list of tuples (where each tuple is having a form (word, tag)). The tag in case of is a part-ofspeech tag, and signifies whether the word is a noun, adjective, verb, and so on.

Default tagging: is a basic step for the part-of-speech tagging. It is performed using the Default Tagger class. The Default Tagger class takes 'tag' as a single argument. NN is the tag for a singular noun. Default Tagger is most useful when it gets to work with most common part-of-speech tag. That's why a noun tag is recommended

For Example, if the preceding word is an article, then the word in question must be a noun. This information is coded in the form of rules. Example of a rule: If an ambiguous/unknown word X is preceded by a determiner and followed by a noun, tag it as an adjective

POS tag ambiguity:

Common parts of speech in English are noun, verb, adjective, adverb, etc. The POS tagging problem is to determine the POS tag for a particular instance of a word. The main problem with POS tagging is ambiguity. For Example: In English: I bank1 on the bank2 on the River bank3 for my transaction. (Bank1 is verb, other are noun)
b) State difference between open vs. closed classes in POS tagging.

- Open vs. Closed classes

Closed:

- determiners: a, an, the
- pronouns: she, he, I
- prepositions: on, under, over, near, by, ...
- Grammatical words deal with the formation of sentences.
- They have ambiguous meaning and serve to express grammatical relationships with other words within a sentence

Open:

- Nouns, Verbs, Adjectives, Adverbs.
- Lexical words deal with content and vocabulary.
- They have concrete meaning that goes beyond their function in a sentence.
c) Apply Viterbi Algorithm on the below given bigram and lexical probabilities;

Bigram Probabilities			
	Noun	Verb	Other
Noun	$1 \backslash 4$	$1 \backslash 4$	0
Verb	$1 \backslash 4$	0	$1 \backslash 4$
Other	$1 \backslash 3$	0	$1 \backslash 3$

	O1=time	O2=flies	O3=like	O4=an	O5=arrow
Noun	$1 \backslash 5$	$1 \backslash 5$	0	0	$1 \backslash 5$
Verb	$1 \backslash 5$	$2 \backslash 5$	$1 \backslash 5$	0	0
Other	0	0	$1 \backslash 5$	$2 \backslash 5$	0

ANS:

hi	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
noun	$1 / 3 \times 1 / 5=1 / 15$	$1 / 5 \times 1 / 4 \times 1 / 15=1 / 300$	$0 \times 1 / 150=0$	0	875
verb	0	$2 / 5 \times 1 / 4 \times 1 / 15=1 / 150$	$1 / 5 \times 1 / 4 \times 1 / 150=1 / 3000$	0	0
other	0	0	$1 / 5 \times 1 / 3 \times 1 / 150=1 / 2250$	$1 / 3 \times 2 / 5 \times 1 / 2250=1 / 16875$	0

Question No. 5:
a) Apply Bayesian theorem over the below given string:
$\wedge J o h n$ got many NLP books. ^He found them all very interesting.
Where for lexical probabilities assume John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.
ANS:
$\mathrm{P}(\mathrm{T})=\mathrm{PW}$ IT $)=\mathrm{tt}(\mathrm{ti} / \mathrm{ti}-1)-\mathrm{P}(\mathrm{wi}) \mathrm{tiP} 1(\mathrm{ti} / \mathrm{ti}-1)=\mathrm{P}(\mathrm{Wi} / \mathrm{ti})$
Le corpus :^ John got many NLP books found all very interesting POS tagged
^N V N N.^N V N A R A
Recording numbers

Bigram Probabilties				$\mathrm{P}(\mathrm{N} / \mathrm{V})=\#(\Lambda=N) / \#^{\wedge}$		
		N	V	A		
\wedge	0	1	0	0	0	0
N	0	1/5	2/5	1/5	0	1/5
V	0	1/2	0	1/5	0	0
A	0	1/3	0	0	1/3	1/3
R	0	0	0	1	0	0
.	1	0	0	0	0	0

Lexical probability
John
Got
Many
NLP books

Λ	0.5	0.3	0.2	0.1	0
N	0.5	0.3	0.2	-	-
V	0.5	0.3	0.2	-	-
A	0.5	-	-	-	-
R	0.5	-	-	-	-
-					

$$
\begin{aligned}
& \text { P(John/^) }=\mathrm{P}(\mathrm{Wi}=\mathrm{John} / \mathrm{ti}=\wedge) \\
& =\#(\mathrm{John}, \wedge) / \#^{\wedge} \\
& \#(\mathrm{~m} \mathrm{y}, \wedge) / \text { \#^ }^{\wedge}
\end{aligned}=0.5 \times 2 / 2=0.5
$$

b) Find the CFG of the string "abaabaa" using the production rules $\mathrm{S} \rightarrow \mathrm{a}, \mathrm{S} \rightarrow \mathrm{aAS}, \mathrm{A} \rightarrow \mathrm{Bs}$

Good Luck :

