

Important Instructions:

1) Open this MS-Word document and start writing answers below each respective

question given on page 2.

2) Answers the question in the same sequence in which they appear.

3) Provide to the point and concrete answers. Some of the questions are open ended and

therefore must be answered using your own opinion and thoughts but backed with

logical reasons.

4) First read the questions and understand what is required of you before writing the

answer.

5) Attempt the paper yourself and do not copy from your friends or the Internet.

Students with exactly similar answers or copy paste from the Internet will not get

any marks for their assignment.

6) You can contact me for help if you have any doubt in the above instructions or the

assignment questions.

7) All questions must be attempted.

8) Do not forget to write your name, university ID, class and section information.

9) Rename you answer file with your university ID# before uploading to SIC.

10) When you are finished with writing your answers and are ready to submit your

answer, convert it to PDF and upload it to SIC unzipped, before the deadline

mentioned on SIC.

Spring Semester 2020 Final Exam

Course: - Distributed Computing

Deadline: - Mentioned on SIC Marks: - 50

Program: - MS (CS) Dated: 24 Sept 2020

Student Name: _AWAID ULLAH_ Student ID#:_12714_

Class and Section:_ 4th Semester

Section: Remote Invocation

Q1. Explain how a Request-Reply protocol handles the following situation. (10)

a) Server receives same request more than once.

b) Server reply message is lost.

Section: Indirect Communication

Q:3 Differentiate between any three types of indirect communication? (15)

Section: OS Support

Q5. Differentiate a between a network OS and distributed OS. (6)

Q6. Describe briefly how the OS supports middleware in a distributed system by providing

and managing (6)

a) Process and threads

b) System Virtualization

Section: Distributed Objects and Components

Q7. Write in your own words the issues with Object (distributed) oriented middlewares.

(13)

Section: Remote Invocation

Q1. Explain how a Request-Reply protocol handles the following situation.

a) Server receives same request more than once.

b) Server reply message is lost.

ANS:

a) Server receives same request more than once.

A client sends a request to a server, which performs the requested action while the client waits.

The server then sends the reply to the client, which receives the reply.

typical client-server interactions – request-reply communication is synchronous because the

client process blocks until the reply arrives

The server can receive it multiple times. the server may receive the first request message, but it

takes longer than the client timeout to complete the command and return a response. This may

cause the server to perform more than one operation on the same request. To avoid this, the

protocol aims to identify consecutive messages (from the same client) with the same request ID

and filter out duplicates. If the server has not sent a response, it does not need to take any special

action-it will forward the response after the operation is completed.

b) Server reply message is lost.

 The operating system starts a timer when the stub is generated and sends a request. If

response is not received before timer expires, then a new request is sent.

 Lost message – works fine on retransmission.

 Many requests sent- cannot locate server.

 If request is not lost, we should make sure server knows that its a retransmission.

 Some messages can be retransmitted any number of times without any loss.

 Some retransmissions cause severe loss.

 Solution- client assigns sequence number on requests made by client.

 Drawback- Server maintains administration on each client. How long to maintain.

If the server has already sent a response when it receives a repeated request, it will need to rerun

the operation to get the result unless the result of the original execution is stored. Some servers

may run their operations multiple times and get the same results each time. Idempotent is an

operation that can be performed multiple times, and its effect is the same as if it was performed

just once. For example, the operation of adding an element to a set is an idempotent operation,

because every time the operation is performed will have the same effect on the set, and the

operation of adding an element to a sequence is indeed not an idempotent operation, because it

will Run-time expansion sequence. The operations of the server are idempotent, and no special

measures are required to avoid performing its operations multiple times.

Section: Indirect Communication

Q:3 Differentiate between any three types of indirect communication?

ANS:

Three types of indirect communication

Group communication Publish-subscribe system Message queues

Group communication: is concerned with the
delivery of messages to a set of recipients
supporting one-to-many communication.

•Publish-subscribe systems:
Many systems, such as the
financial trading are
systems wherein a large
number of producers (or
publishers) distribute
information items of
interest (events) to a
similarly large number of
consumers (or subscribers).

•Message
queues: offer a
point-to-point
service whereby
producer
processes can
send messages to
a specified queue
and consumer
processes can
receive messages
from the queue or
be notified of the
arrival of new
messages in the
queue.

Group is represented in the system by a group
identifier.

Recipients elect to receive messages sent to a
group by joining the group.

•It would be complicated
and inefficient to employ
any of the core
communication paradigms
discussed above for this
purpose

Senders then send messages to the group via
the group identifier, and hence do not need
to know the recipients of the message.

•Publish-subscribe systems
ensures information
generated by producers is
routed to consumers who
desire this information.

1) Group communication

Group communication provides a service through which a message is sent to a group, and then

the message is delivered to all members of the group. In this operation, the sender does not know

the identity of the recipient. Group communication is an abstraction of multicast communication,

which can be implemented on IP multicast or equivalent overlay networks, adding considerable

additional value in terms of group membership management, fault detection and reliability. And

order guarantee. With additional guarantees, group communication is multicast to IP, and TCP

refers to point-to-point services in IP.

The operation set for group communication is shown in table

Table: Group communication

2) Publish-subscribe system

A Publish-subscribe system is a system in which a publisher publishes structured events to an

event service, and subscribers express interest in specific events through subscriptions.

Subscriptions can be any mode of structured events. For example, subscribers may express

interest in any event related to this manual, such as whether there is a new version or an update

to a related website. The task of the publish-subscribe system is to compare subscriptions with

published events and ensure the correct delivery of event notifications. A given event will be

broadcast to potentially many subscribers, so publish-subscribe is basically a one-to-many

communication paradigm.

The operations of a publish-subscribe system are listed in Table

Table: Publish-subscribe system

3) Message queues

Another important category of indirect communication systems is message queues (or more

accurately distributed message queues). When groups and publish-subscribe provide one-to-

many communication methods, message queues use message queues as an indirect concept to

provide point-to-point services, thereby obtaining the desired characteristics of decoupling space

and time. They are peer-to-peer, the sender puts the message in the queue, and then a single

process deletes it. Message queues are also called message-oriented middleware. It is a major

type of commercial middleware with key implementations such as IBM Web Sphere MQ,

Microsoft MSMQ and Oracle Streams Advanced Queuing (AQ). The main purpose of these

products is to achieve enterprise application integration (EAI), that is, the integration between

applications within a given enterprise, which is achieved by the following means: the inherent

loose coupling of message queues.

The operations that can be invoked on a message queue are listed in table

Messages are usually added to the queue based on the first-in-first-out (FIFO) policy, but

priorities may be used as well. Message queues try to ensure reliable delivery by persisting

messages: messages are eventually delivered (time uncoupling). Messages are also only sent

once and as received to provide integrity.

The consumers may receive messages by actively checking (polling) if messages are available,

or by receiving notifications that messages have become available. Messages may be filtered

based on certain properties.

Section: OS Support

Q5. Differentiate a between a network OS and distributed OS.

ANS:

The main difference between network OS and distributes OS is that distributed OS are for

some specific uses only. They are not used generally. Whereas the network OS are generally

used by the end users to run their applications and meet their needs.

Moreover, the network OS allows users to have a degree of autonomy and have interactive

responsiveness of their machines where the work of one user is totally in his/her hand and does

not affect the other whereas the distributed OS does not lead the end user to be autonomous as

the programs of one user can affect the other.

In other words, both the Network Operating System and Distributed Operating System have a

common hardware base but the difference lies in software. Some more of the differences are as:

A network OS is made up of software and associated protocols that allow a set of computer

network to be used together while a distributed OS is an ordinary centralized operating system

but runs on multiple independent CPUs.

In network OS, Environment users are aware of multiplicity of machines whereas in distributed

OS, Environment users are not aware of multiplicity of machines.

Control over file placement is done manually by the user in network OS while in distributed OS,

the control lover file placement can be done automatically by the system itself.

Q6. Describe briefly how the OS supports middleware in a distributed system by providing

and managing

a) Process and threads

b) System Virtualization

ANS:

 The task of middleware is to provide a high-level programming abstraction for the

development of distributed systems. The OS supports middleware to do so with the following

ways.

A) How the OS supports middleware in a distributed system by providing and

managing Process and Threads:

The operating system running at a node supports middleware in distributed system by

providing and managing process and threads associated with user level services such as

communication libraries. Through the management of Process and threads, the OS provides

ease to manage local hardware resources for processing, storage and communication.

Middleware utilizes a combination of these local resources to implement its mechanism for

remote invocations between objects or processes at the nodes. The OS enables the

middleware to deliver distributed resources sharing to users. Kernel and server processes are

the components that manage the resources and present clients with an interface to the

resources by providing and managing process and Threads.

B) How the OS support middleware in a distributed system by providing and

managing System Virtualization

They OS support middleware for System Virtualization by providing multiple virtual

machines over underlying physical machine architectures. The OS enables the middleware to

support potentially large numbers of virtual machines and multiplex resources between them.

The virtualization system allocates the physical processor(s) and other resources of a physical

machine between all virtual machines that it supports. Hence on server machines, an

organization assigns each service it offers to a virtual machine and then optimally allocates

the virtual machine to physical servers. This way, the middleware get supported by the OS in

a distributed system by providing and managing system virtualization.

Section: Distributed Objects and Components

Q7. Write in your own words the issues with Object (distributed) oriented middlewares.

ANS:

As a matter of fact, an increasing number of next-generation applications will be

developed as distributed “systems of systems,” which include many interdependent levels, such

as network/bus interconnects, local and remote end systems, and multiple layers of common and

domain-specific middleware. There are number of issues with Object (distributed) oriented

middleware. Some of them are the following as per my own understanding of the topic.

Implicit Dependencies: object interfaces do not describe what the implementation of the objects

depend on , making object-based systems difficult to develop and subsequently manage.

Programming Complexity: Programming distributed object middleware leads to a need to

master many low-level details associated with middleware implementations.

Lack of Separation of Distribution Concerns: Application developers are obliged to consider

details of concerns such as security, failure handling and concurrency, which are largely similar

from one application to another.

Moreover, Predictability of Operating Characteristics, which is that it is difficult to predict

accurate performance of the working of middlewares.

The other issue I understand is Controllability of Operating Characteristics, which states that it is

difficult for the operating system to control all the characteristics of Object oriented

middlewares.

Moreover, the adaptability of Operating Characteristics for applications is another key concern.

They may not be adaptable with all components.

I believe that all the above issues are associated with respect to some features such as;

Time,

Quantity of information,

Accuracy,

Confidence, and

Synchronization.

All these issues become highly volatile in systems of systems, due to the dynamic interplay of

the many interconnected parts. These parts are often constructed in a similar way from smaller

parts. Given the complexity of the issues with Object Oriented middlewares, various tools and

techniques are needed to configure and reconfigure these issues hierarchically so they can adapt

to a wider variety of situations and result in smooth operation.

