
ID #14110

NAME :SALMAN AFRIDI

PROGRAME MS(CS)

UNIVERSITY INU PESHAWAR

PAPER FINAL

Spring Semester 2020 Final Exam
Course: - Distributed Computing

Deadline: - Mentioned on SIC Marks: - 50

Program: - MS (CS) Dated: 24 June 2020

Student Name: SALMAN AFRIDI Student ID#:14110

Class and Section:____________________

Section: Remote Invocation

Q1. Describe briefly the purpose of the three communication primitives in request-reply

protocols. (6)

• ANSWER: Normally in request-reply communication the client process blocks until

the reply arrives from the server (synchronous).

• It can also be reliable because the reply from the server is effectively an

acknowledgement to the client.

• Asynchronous request-reply communication is an alternative that may be useful in

situations where clients can afford to retrieve replies later.

• The request-reply protocol we describe here is based on a trio of communication

primitives, doOperation, getRequest and sendReply, as shown in Figure Are as below:

• The doOperation method is used by clients to invoke remote operations.

• Its arguments specify the remote server and which operation to invoke, together

with additional information (arguments) required by the operation.

 Below 5.3 Figure outlines the three communication primitives:

 The doOperation method sends a request message to the server whose Internet

address

 port are specified in the remote reference given as an argument. The caller of

doOperation is blocked until the server performs the requested operation and

transmits a reply message to the client process.

 getRequest is used by a server process to acquire service requests, as shown in

Figure 5.3

 When the server has invoked the specified operation, it then uses.

 sendReply to send the reply message to the client. When the reply message is

received by the client the original doOperation is unblocked and execution of the

client program continues.

Q2. Explain the technical difference between RPC and RMI? (4)

ANSWER: Remote Procedure Call (RPC): is a programming language feature devised for the

distributed computing and based on semantics of(local procedure) calls. It is the most common

forms of remote service and was designed as a way to abstract the procedure call mechanism to use

between systems connected through a network. It is similar to IPC mechanism where the operating

system allows the processes to manage shared data and deal with an environment where different

processes are executing on separate systems and necessarily require message-based communication.

Remote Method Invocation (RMI): is similar to RPC but is language specific and a feature of java.

A thread is permitted to call the method on a remote object. To maintain the transparency on the

client and server side, it implements remote object using stubs and skeletons. The stub resides with

the client and for the remote object it behaves as a proxy. When a client calls a remote method, the

stub for the remote method is called. The client stub is accountable for creating and sending the

parcel containing the name of a method and the marshaled parameters, and the skeleton is

responsible for receiving the parcel.

Section: Indirect Communication

Q:3 In contrast to Direct Communication, which two important properties are present in

Indirect Communication? (6)

ANSWER: Direct communication may be used when there is no room for discussion or

compromise. This style usually doesn't allow the listener to respond with an opinion

or viewpoint. For example, your supervisor may say to you, 'You need to get to

work on time every day. You must not be late again.

INDIRECT COMMUNICATION: Define as the the communication between entities in

distributed system through intermediary with no direct coupling between the sender

and receiver’s.

 Key properties Space uncoupling: The sender does not know or need to know the

identity of the receiver(s), and vice versa.

 Time uncoupling :The sender and the receiver(s) can have independent lifetimes. Indirect

communication is often used in distributed systems where change is anticipated.

Examples • Mobile environments where users may rapidly connect to and

disconnect from the network • Managing event feeds in financial systems

Q:4 Provide three reasons as why group communication (single multicast operation) is

more efficient than individual unicast operation? (9)

ANSWER: 1. Unicast –This type of information transfer is useful when there is a

participation of single sender and single recipient. So, in short you can term it as a one-to-

one transmission. For example, a device having IP address 10.1.2.0 in a network wants to

send the traffic stream(data packets) to the device with IP address 20.12.4.2 in the other

network,then unicast comes into picture. This is the most common form of data transfer

over the networks.

In multicasting:one/more senders and one/more recipients participate in
data transfer traffic. In this method traffic recline between the boundaries
of unicast (one-to-one) and broadcast (one-to-all). Multicast lets server’s
direct single copies of data streams that are then simulated and routed to
hosts that request it. IP multicast requires support of some other protocols
like IGMP (Internet Group Management Protocol), Multicast routing for its
working. Also in Classful IP addressing Class D is reserved for multicast
groups

Section: OS Support

Q5. Differentiate a between a network OS and distributed OS. (6)

ANSWE: Network Operating System runs on a server and provides the server the capability to

manage data, users, groups, security, applications, and other networking functions.

 The primary purpose of the network operating system is to allow shared file and

printer access among multiple computers in a network, typically a local area

network (LAN), a private network or to other network.

Distributed Operating System is a model where distributed applications are running on

multiple computers linked by communications.  Distributed system is a collection

of independent computers that appear to the user of the system as a single computer.

A distributed operating system is an extension of the network operating system that

Network Operating Systems :- Contains N copies of Operating Systems, communication

between machines is via shared files.

Distributed OS : - Contains N copies of Operating systems, communication between nodes is

via messages over a network. These messages pass the necessary parameters for the

task and on completion messages return the results. It as if computers sends emails

to other computers with request and answer.

Q6. Describe briefly how the OS supports middleware in a distributed system by providing

and managing (6)

a) Process and threads

b) System Virtualization

ANSWER6: Middleware in the context of distributed applications is software that provides

services beyond those provided by the operating system to enable the various components

of a distributed system to communicate and manage data. Middleware supports and

simplifies complex distributed applications .

A)process and threads:

 A process, in the simplest terms, is an executing program. One or more threads run in

the context of the process. A thread is the basic unit to which the operating system

allocates processor time. A thread can execute any part of the process code, including

parts currently being executed by another thread.

A job object allows groups of processes to be managed as a unit. Job objects are

namable, securable, sharable objects that control attributes of the processes associated

with them. Operations performed on the job object affect all processes associated with

the job object.

A thread pool is a collection of worker threads that efficiently execute asynchronous

callbacks on behalf of the application. The thread pool is primarily used to reduce the

number of application threads and provide management of the worker threads.

A fiber is a unit of execution that must be manually scheduled by the application. Fibers

run i Operating system abstracts operating system components to guest operating

systems such as memory access, file system, and network access. One key component of

this type of virtualization is that the kernel of the parent operating system is the same

kernel used in each guest operating system. This type of virtualization avoids emulation

since the same system call interface is shared by each guest. Memory and CPU resources

can be managed very effectively because load balancing is more efficient since there is

not a

 boundary that must be crossed to perform process execution.

Since all guests hosted using OS virtualization share the same kernel, they also share

any problems within the shared kernel including stability or security problems. Upgrades

can be problematic because upgrading one virtual machine requires updating all virtual

machines on the same host system, which can cause logistical problems.

n the context of the threads that schedule them.

B)

Section: Distributed Objects and Components

Q7. Write in your own words the issues with Object (distributed) oriented middlewares.

(13)

ANSWER: Two fundamental trends influence the way we conceive and construct new

computing and information systems. The first is that information technology of all

forms is becoming highly commoditized i.e., hardware and software artifacts are

getting faster, cheaper, and better at a relatively predictable rate. The second is the

growing acceptance of a network-centric paradigm, where distributed applications

with a range of quality of service (QoS) needs are constructed by integrating

separate components connected by various forms of communication services. The

nature of this interconnection can range from 1. The very small and tightly coupled,

such as avionics mission computing systems to 2. The very large and loosely

coupled, such as global telecommunications systems. The interplay of these two

trends has yielded new architectural concepts and services embodying layers of

middleware. These layers are interposed between applications and commonly

available hardware and software infrastructure to make it feasible, easier, and more

cost effective to develop and evolve systems using reusable software. Middleware

stems from recognizing the need for more advanced and capable support–beyond

simple connectivity–to construct effective distributed systems. A significant portion

of middleware-oriented R&D activities over the past decade have focused on 1. The

identification, evolution, and expansion of our understanding of current middleware

services in providing this style of development and 2. The need for defining

additional middleware layers and capabilities to meet the challenges associated with

constructing future network-centric systems. These activities are expected to

continue forward well into this decade to address the needs of next-generation

distributed applications. During the past decade we've also benefited from the

commoditization of hardware (such as CPUs and storage devices) and networking

elements (such as IP routers). More recently, the maturation of programming

languages (such as Java and C++), operating environments (such as POSIX and

Java Virtual Machines), and enabling fundamental middleware based on previous

middleware R&D (such as CORBA, Enterprise Java Beans, and .NET) are helping

to commoditize many software components and architectural layers. The quality of

commodity software has generally lagged behind hardware, and more facets of

middleware are being conceived as the complexity of application requirements

increases, which has yielded variations in maturity and capability across the layers

needed to build working systems. Nonetheless, recent improvements in frameworks

[John97], patterns [Gam95, Bus96, Sch00b], and development processes [Beck00,

RUP99] have encapsulated the knowledge that enables common off-the-shelf

(COTS) software to be developed, combined, and used in an increasing number of

real-world applications, such as e-commerce web sites, consumer electronics,

avionics mission computing, hot rolling mills, command and control planning

systems, backbone routers, and high-speed network switches. The trends outlined

above are now yielding additional middleware challenges and opportunities for

organizations and developers, both in deploying current middleware-based solutions

and in inventing and shaping new ones. To complete our overview, we summarize

key challenges and emerging opportunities for moving forward, and outline the role

that middleware plays in meeting these challenges. • Growing focus on integration

rather than on programming – There is an ongoing trend away from programming

applications from scratch to integrating them by configuring and customizing

reusable components and frameworks [John97]. While it is possible in theory to

program applications from scratch, economic and organizational constraints– as

well as increasingly complex requirements and competitive pressures–are making it

infeasible to do so in practice. Many applications in the future will therefore be

configured by integrating reusable commodity hardware and software components

that are implemented by different suppliers together with the common middleware

substrate needed to make it all work harmoniously. • Demand for end-to-end QoS

support, not just component QoS – The need for autonomous and time-critical

behavior in next-generation applications necessitates more flexible system

infrastructure components that can adapt robustly to dynamic end-to-end changes in

application requirements and environmental conditions. For example, next-

generation applications will require the simultaneous satisfaction of multiple QoS

properties, such as predictable latency/jitter/throughput, scalability, dependability,

and security. Applications will also need different levels of QoS under different

configurations, environmental conditions, and costs, and multiple QoS properties

must be coordinated with and/or traded off against each other to achieve the

intended application results. Improvements in current middleware QoS and better

control over underlying hardware and software components–as well as additional

middleware services to coordinate these–will all be needed. • The increased

viability of open systems – Shrinking profit margins and increasing shareholder

pressure to cut costs are making it harder for companies to invest in long-term

research that does not yield short-term pay offs. As a result, many companies can

no longer afford the luxury of internal organizations that produce completely

custom hardware and software components with proprietary QoS support. To fill

this void, therefore, standards-based hardware and software researched and

developed by third parties–and glued together by common middleware–is becoming

increasingly strategic to many industries. This trend also requires companies to

transition away from proprietary architectures to more open systems in order to reap

the benefits of externally developed components, while still maintaining an ability

to compete with domain-specific solutions that can be differentiated and

customized.

How Middleware Addresses Distributed Application Challenges Requirements for faster

development cycles, decreased effort, and greater software reuse motivate the

creation and use of middleware and middleware-based architectures. Middleware is

systems software that resides between the applications and the underlying operating

systems, network protocol stacks, and hardware. Its primary role is to 1.

Functionally bridge the gap between application programs and the lower-level

hardware and software infrastructure in order to coordinate how parts of

applications are connected and how they interoperate and 2. Enable and simplify the

integration of components developed by multiple technology suppliers. When

implemented properly, middleware can help to: • Shield software developers from

low-level, tedious, and error-prone platform details, such as socket-level network

programming. • Amortize software lifecycle costs by leveraging previous

development expertise and capturing implementations of key patterns in reusable

frameworks, rather than rebuilding them manually for each use. • Provide a

consistent set of higher-level network-oriented abstractions that are much closer to

application requirements in order to simplify the development of distributed and

embedded systems. • Provide a wide array of developer-oriented services, such as

logging and security that have proven necessary to operate effectively in a

networked environment. Over the past decade, various technologies have been

devised to alleviate many complexities associated with developing software for

distributed applications. Their successes have added a new category of systems

software to the familiar operating system, programming language, networking, and

database offerings of the previous generation. Some of the most successful of these

technologies have centered on distributed object computing (DOC) middleware.

DOC is an advanced, mature, and field-tested middleware paradigm that supports

flexible and adaptive behavior. DOC middleware architectures are composed of

relatively autonomous software objects that can be distributed or collocated

throughout a wide range of networks and interconnects. Clients invoke operations

on target objects to perform interactions and invoke functionality needed to achieve

application goals. Through these interactions, a wide variety of middleware-based

services are made available off-the-shelf to simplify application development.

Aggregations of these simple, middleware-mediated interactions form the basis of

large-scale distributed system deployments

Structure and Functionality of DOC Middleware: Just as networking protocol stacks can be

decomposed into multiple layers, such as the physical, data-link, network, transport,

session, presentation, and application layers, so too can DOC middleware be

decomposed into multiple layers, such

	ANSWER: 1. Unicast –This type of information transfer is useful when there is a participation of single sender and single recipient. So, in short you can term it as a one-to-one transmission. For example, a device having IP address 10.1.2.0 in a netwo...
	In multicasting:one/more senders and one/more recipients participate in data transfer traffic. In this method traffic recline between the boundaries of unicast (one-to-one) and broadcast (one-to-all). Multicast lets server’s direct single copies of da...

