Department of Electrical Engineering
 Assignment

Date: 13/04/2020

Course Details

Course Title:	Digital Signal Processing	Module:	
	30		

Student Details

Name: JUNAID UR REHMAN
Student ID: 11484

(1) ID $\# 11484$
Q) 1 \qquad Consider the following analog signal
(1) Determine $x(t)=3 \cos 100 \pi t+4 \sin 200 \pi t$
to avoid aligisine minimum sampling rate required
Ans 4
minimum sampling rate

$$
\begin{array}{ll}
f_{5} \geq 2 f \text { max } & f f=\frac{\omega}{2 \pi} \\
F_{1}=\frac{100 \pi}{2 \pi} & F_{2}=\frac{200 \pi}{2 \pi} \\
F_{1}=50 \mathrm{~Hz} & F_{2}=100 \mathrm{~Hz}
\end{array}
$$

So
F_{2} is max (greater then f_{1})

$$
f_{s} \geq 2 \times 100 \mathrm{~Hz}
$$

Sampling frequency to aviod alaising
(2) Suppose that the Signal is sampled at the rate $F_{5}=100 \mathrm{~Hz}$ what is the discrete. time signal obtained ster Sampling? Also explain the effect of this sampling rate on the newly generated discrete time signal?
Sol \quad Is $=100 \mathrm{~Hz}$
so F_{1} becomes

$$
F^{\prime}=\frac{F^{\prime}}{F_{s}}=\frac{180}{100}=0.5 \mathrm{~Hz}
$$

F2 become

$$
F_{2}^{\prime}=\frac{F_{2}}{100}=\frac{100}{100}=1 \mathrm{~Hz}
$$

So

$$
\begin{aligned}
& w_{i}^{\prime}=2 \pi f_{i}^{\prime} \\
& w_{i}=2 \pi \times 0^{5} \\
& w_{1}^{\prime}=\pi
\end{aligned}
$$

$$
\omega_{2}^{\prime}{ }_{2}^{\prime}=2 \pi f_{2}^{\prime}
$$

$$
\omega_{2}^{\prime}=2 \pi \times 1
$$

$$
W_{2}=2 \pi
$$

$$
x[n]=3 \cos 100 \pi n+4 \sin 200 \cdot \pi n
$$

The signal becomes

$$
x[n]=3 \cos \pi n+4 \sin 2 \pi n
$$

The effect of this sampling rate on the A newly generated discrete times signal is that there wis be no Aliasing phenomena means that there will not present onward component is the re construction of the Signal we construed the original signal.

$$
\begin{array}{ll}
W_{1}=100 \pi & F_{2}=200 \pi \\
F_{1}=\frac{100 \pi}{2 \pi} & F_{2}=100 \pi \\
T F_{1}=50 &
\end{array}
$$

(3) What is the analog signal $y a(t)$ we Can reconstruct from the samples if we Use ideal interpolation?
Ans folding frequency of the sampled signal

$$
\text { folding frequency }=F / 2 \Rightarrow \frac{100}{2}
$$

$$
=50 \mathrm{~Hz}
$$

We have frequency of the original Signal

$$
f_{1}=50 \mathrm{~Hz}, f_{2}=100 \mathrm{~Hz}
$$

Both. the frequent are either equal or greater the golding spequency
Hence for ideal inter

Hence for ideal inter politian we con construct the original Signal

$$
x_{2}(t)=3 \cos 100 \pi+4 \sin 200 \pi t
$$

The original signal is constructed because we are sampliy frequency at nyquiest rate
We con also reconstruct the signal po sampling Frequency above the nyquist rate.
(4)

Q1bit Consider a discrete time signal which
is given by is given by

$$
x(n)=\left\{\begin{array}{ll}
0^{3} & n \geq 0 \\
0 & n<0
\end{array}\right\}
$$

This is signal is sampled at the rate $\mathrm{Fs}=2 \mathrm{~Hz}$
(1) Draw the Sampled Signal?

Sol $\#$

$T=0.5 \mathrm{sec}$
(ii) The samples q the signals are intended to carry 3 bit per sample. Determine the quiontization level and quantization resolution to quantized the sampled Signal achieved in part 1.?
Sol\#

$$
\begin{aligned}
& L=2^{n} \\
& n=b_{i t}=3 \\
& C=2^{3}=8 \text { levels } \\
& \text { Resolution }=\times \text { max }-x \text { min } \\
& \quad=\frac{1-0}{8}=0 \div 1 L_{25}
\end{aligned}
$$

(iii) Perform the process 9 truncation and rounding ant on all the values of the sampled spinal and find the quantization error for each o the sampled data. Express your answer in tabulator form?

Discrettimesignal truncation Rounding error

1.0	1.0	0.0

0.8	0.9	-0.1

$0.7 \quad 0.7$
0.7
0.6
0.0
0.6

6
0.0
0.6035
0.5
0.$)^{-5}$
0.0
0.5
0.4
0.4
0.0
0.4265
8.353
0.3

04
-0.1
0. 1765
0.1

$$
0.2-0.1
$$

Qua) \# Determine the response of the system to the following input signal with given impolse repose

$$
x[n]=\left\{2, \frac{1}{\uparrow},-2,3,-4\right\}, h[\pi]=\left\{\frac{3}{\uparrow}, 1,2,1,4\right\}
$$

SOL\#

$$
x[n]=\sum_{k+\infty}^{\infty} x[k \ln (n-k)
$$

Step $(1) \neq 1$ Convert $x(n) \& h[n]$ into $x[k] \& h(k)$ So it become.

Step No 2 folded signal $h(-k)$.

Step No 3 Find $y[0]=$?

$$
\begin{aligned}
y[0] & =\sum_{x=-1}^{0} x[-1] h[-1]+x(0) \\
& =2 \times 1+(1)(3) \\
& =2+3 \\
& =5
\end{aligned}
$$

$$
n(1 . j)
$$

TStep Na4 $y[l]=$?

$$
\begin{aligned}
& y[1]=\sum_{k-1}^{1} x[k] h[1-k] \\
&=x[-1) k(-1)+x(0) h(0)+x(11 \cdot h(1) \\
&=(2)(2)+(1)(1)+(3)(-2) \\
&=4+1-6 \\
&=-1 \\
& n=2 \\
& h(2-16) \\
&\left.\left.\left.\int_{-2}^{4}\right|_{0} ^{1}\right|_{1} ^{2}\right|_{2} ^{3}
\end{aligned}
$$

TStep Nos $y[2]=$?

$$
\begin{aligned}
y[2] & =\sum_{k=1}^{2} x(k] h(2-k) \\
= & x[-1] h(-1)+x(0)+h(0)+x(1) h(1) \\
& +x(2) h(2) \\
= & (2)(1)+(1)(2)+(-2)(1)+(3)(3) \\
= & 2+2-2+9 \\
= & 11 \\
n=3 & \left|\left.\right|_{1} ^{2}\right|^{3} h(3-k)
\end{aligned}
$$

(Step $\left.n_{0} 6\right) y[3]=$?

$$
\begin{aligned}
& y[3]=\sum_{k=1}^{+} x[k] \times h(3-k) \\
& =2 \times 4+1 \times 1+-2 \times 2+3 \times 1+4 \\
& =4+1-4+3-12 \\
& =-8 \\
& n=4 \\
& \left.\left.\left.\left.\int_{0}^{4}\right|_{2=1} ^{1}\right|^{2}\right|^{1}\right|^{3} n(4-k)
\end{aligned}
$$

Step Not $y[4]=$?

$$
\begin{aligned}
& y[4]=\sum_{k=0} x(k) \times h[4-k] \\
= & x(1 \times 4)+(-2)(1)+(3)(2)+(-4) \cdot(1) \\
= & 4-2+6-4 \\
= & 4 \\
n= & \left.\int_{2}^{4} 11\right|_{3} ^{2}|1|^{3} h(5-k)
\end{aligned}
$$

[stepit $]$

$$
\begin{aligned}
y[5] & =\sum_{k=1}^{3} x(k) \times h[5-k) \\
& =(-2)(4)+(3)(1)-(4)(1) \\
& =-8+3-8 \\
& =-13 \\
n & =-6
\end{aligned}
$$

Step +9

$$
\begin{aligned}
& y[6]=\sum_{k=2}^{n} x(2) h(2)+x(3)(d h(3) \\
& y(6]=(3)(4)+(1)(-4) \\
& =12-4 \\
& =8 \\
& n=\left.7\right|^{4}\left|\begin{array}{l}
4 \\
3
\end{array}\right|^{4}|1|^{3} h(7-k)
\end{aligned}
$$

(II)

Q) (b) \# compute the convolution $y(n)$ of the following Signal.

$$
\begin{aligned}
& x(n)= \begin{cases}\alpha^{n+1}, & -3 \leq n \leq 5 \\
0, & \text { else wher }\end{cases} \\
& h(n)= \begin{cases}2^{n}, & 0 \leq n \leq 4 \\
0, & \text { elsewhere. }\end{cases}
\end{aligned}
$$

Sol\# X $X(n)=\left\{\alpha^{-2}, \alpha^{-1}, \alpha ; \alpha^{1} ; \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}$
and

$$
\begin{aligned}
& h(n)=\{1,2,4,6,16\} \\
& y[n)=\sum_{k=0}^{n} h(k) \times(n-10)
\end{aligned}
$$

There fare

$$
\begin{aligned}
& y(-2)=\alpha^{-2} \\
& y(-1)=x(-\alpha)+x(1)=\alpha^{-2}+\alpha^{-1} \\
& y(0)=h(\alpha) x(-2)+h(x) h(-9)+h(x) \not x(\alpha) \\
& =9-\alpha^{-2}+9 \cdot \alpha^{-2}+9 \cdot 1+\alpha^{-3}+9
\end{aligned}
$$

(12)

ID A 11484

$$
\begin{aligned}
y(1) & =\alpha^{-2}+\alpha^{-3}+1+h(9) x(4-3 \\
& =\alpha^{-2}+\alpha^{-1} 9+h(3) t x(1)=x^{-2}+x^{1}+1+2 \alpha^{\prime} \\
y(2) & =\alpha^{-2}+\alpha^{-1}+1+2 \alpha^{\prime}+h(2) \times(2) \\
& =\alpha^{-2}+\alpha^{-3}+1+2 \alpha^{1}+4 \alpha^{2} \\
y(3) & =\alpha^{-2}+\alpha^{-1}+9+2 \alpha^{1}+4 \alpha^{2}+6 \alpha^{3} \\
y(4) & =\alpha^{-2}+\alpha^{-1}+9+2 \alpha^{1}+4 \alpha^{2}+6 \alpha^{3}-h(4) \cdot x(14) \\
& =\alpha^{-2}+\alpha^{-3}+9+2 \alpha^{1}+4 \alpha^{2}+8 \alpha^{3}+16 \alpha^{4} \\
y(5) & =1+2 \alpha^{1}+4 \alpha^{2}+8 \alpha^{3}+16^{4}+5 \\
y(6) & =4 \alpha^{2}+8 \alpha^{3}+16 \alpha^{4}+\alpha^{5}+\alpha^{6} \\
y(7) & =8 \alpha^{3}+\alpha^{4}+\alpha^{5}+\alpha^{6} \\
y(8) & =16 \alpha^{4}+\alpha^{5}+\alpha^{6} \\
y(9) & =\alpha^{5}+\alpha^{6} \\
y(16) & =\alpha^{6}
\end{aligned}
$$

Q) 3 Determine the z-tranjorm 1 the frowing Signal and also sketh its Reion of lanvergence
$(R O C)$?

1) $+\quad x(n)=\left\{\begin{array}{l}(1), n>0 \\ \left\{\begin{array}{l}4 \\ 1\end{array}\right)^{-n} n<0 \\ 3\end{array}\right.$
(2) $x(n)=\left\{\begin{array}{lr}(1 / 2)^{n} & -3^{n}, n \geqslant 0 \\ 0 & \text { elfe where }\end{array}\right.$

Solt (1)
Writing in the form 1 z tenstam:

$$
x(2)=\sum_{n=0}^{\infty}\binom{1}{4}^{h} d z^{-n}+\sum_{n=\infty}^{2}\left(1 \begin{array}{l}
1 \\
3
\end{array}\right)^{n} z^{-n}-1
$$

USim jeinadic Series

$$
\begin{aligned}
& =\frac{1}{1-1 / 4} z^{+}+\sum_{n=0}^{2}\left[\frac{1}{3}\right]^{n} z^{n}-1 \\
& =\frac{1}{1-\frac{1}{4} z^{-1}}+\frac{1}{1-2 / 3} z^{-1} \\
& =1-1 / 3 z+1-1 / 4 z^{-1}-1 \\
& \left(1-1 / 4 z^{-1}\right)\left(1-1 / 4 z^{-1}\right) .
\end{aligned}
$$

(14)

ID H 11484

$$
\begin{aligned}
& =\frac{1-1 / 3 z+1 \cdot 1 / 4 z^{-1}-\left(1 \cdot 1 / 4 z^{-1}\right)(1 \cdot 1 / 3 z)}{\left(1-1 / 4 q z^{-1}\right)(1-1 / 3 z)} \\
& =\frac{1 f 1 / 3 z+1-1 / 4 z^{-1} 1: 1+1 / 3 / 2+1 / 4 z^{-1}+1 / 2}{\left(1-1 / 4 z^{-1}\right)(1-1 / 3 z)} \\
& =\frac{13 / 11}{\left(1-1 / 4 z^{-1}\right)(1-1 / 3 z)}
\end{aligned}
$$

Hence the $R O C$ is $1 / 4<|z|<3$

(2) $x(n)=\sum_{n=0}^{\infty}(1 / 2)^{n} z^{-n}-\sum_{n=0}^{\infty} 3^{n} z^{-n \cdot}$
using geonetic series to simplify it

$$
\begin{aligned}
& =\frac{1}{1-1 / 2 z^{-1}}-\frac{1}{1-3 z^{-1}} \\
& =\frac{y^{-}-3 z^{-1}-1+1 / 2 z^{-1}}{\left(1-1 / 2 z^{-1}\right)\left(1-3 z^{-1}\right)}
\end{aligned}
$$

