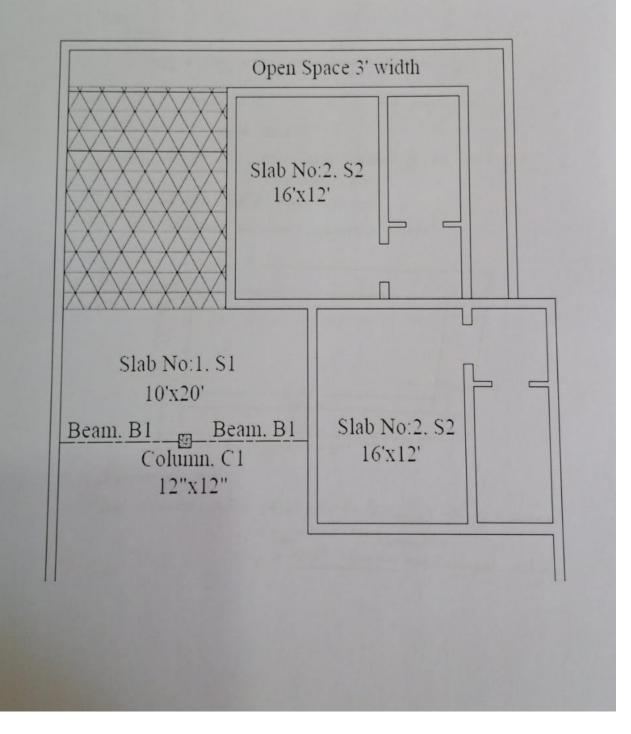
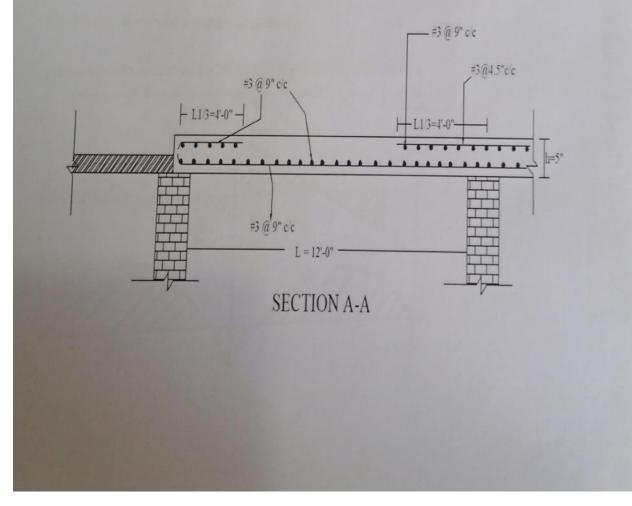

Final Paper Submitted by Syed Iftikhar Alam


ID: 14233

MS Transportation Engineering

Paper Reinforced Design Concrete

Drawing Showing Slabs, Beams and Columns


1. Design of Slab1, S1:

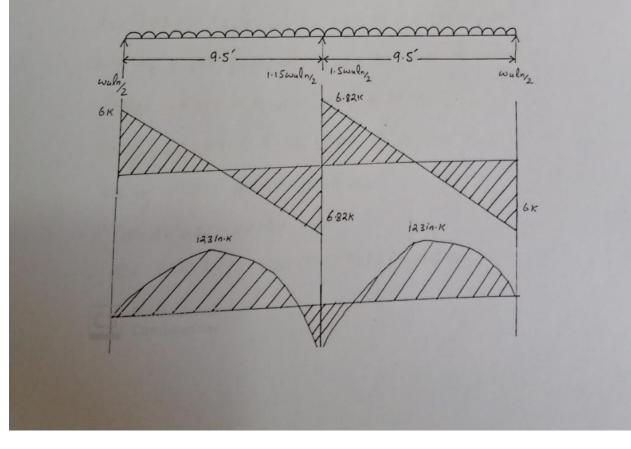
Solution:
(1) Design & Slab, S₁;
Step-1
Sign:

$$l_{0}/l_{0} = 20_{10} = 2$$
 one way Slab.
As $l_{0}/l_{0} = 2$ one way Slab.
Assume 5" depth Slab.
Span length for end span according to ACI 8.7
is minimum $\frac{2}{3}$:
(i) $l = l_{0} + h_{2} = 98^{0} + 5_{12} = 9.92^{2}$
(ii) c/c distance between supports = 10.375'
 l_{0}/l_{0

Shart thickness (hy) = $(l_{120}) \times (0.4 + \frac{5}{9}/100000)$ for fy < 60000 psi= $9.92_{10} \times (0.4 + 40000/100000) \times 12$ = 4.7616'' Minimum requirement. Act 4.2.2.

Panel	Depth (in)	Mark	Bottom Reinforcement	Mark	Top reinforcement		
S2	5"	M1	3/8" ф @ 9" c/c	MT1	3/8" φ @ 4.5" c/c	Continuous End	
52	5	NI I	5/8 Q @ 9 C/C	MT2	3/8" φ @ 9" c/c	Non continuous Ends	
S1	5"	M2	3/8" φ @ 6" c/c	MT2	3/8" ф @ 9" c/c	Non Continuous End	
		M1	3/8" φ @ 6" c/c 3/8" φ @ 9" c/c				

2 At MID Span:


Positive moment (Mpos) = Coefficient × (Wuln*) = (1/11) × 21.25 × (9.5) 3

= 10.255 ft. K x 12

= 123 in.K.

- $V_{int} = 1.15 Wuln / 2$ = 1.15 x 1.25 x 9.5 / 2 = 6.82 K $V_{ucint} = 6.82 - 1.25 \times 1.25 = 6.97 K$
- Vext = wuln/2 = 1.25x 9.5/2 = 5.9 = 6K

Vacere) = 6 - 1.25 × 1.25 = 5.93K

10 Finally use #3 @ 9" c/c (#10 @ 225mm c/c). "Provide # 3 @ 9" c/c as negative reinforcement along the longer direction." Ma, pos, (d1+11) = 1.53 ft. K = 18.36 in. K > \$ Mn Let a= 0.2d a = 0.2x4 a= 0.8in As = 1.53 x12/ \$0.9 x40 x (4- (0.812)) 3 = 0.146 int a = 0.146 x 40/(0.85 x 3 x 12) = 0.191 in As = 1.53 × 12 / 30.9 × 40 × (4-0.191/2) 3 = 0.131 int a= 0.131 × 40 / (0.85 × 3×12) = 0.171 in As= 1.53 × 12 / 30.9 × 40 × (4-0.30/2) = 0.131 in2. OK. Using 318 \$ (#3) \$#10,10mm 3, with bar area Ab = 0.11 in2 Spacing = 0.11 × 12 /0.131 = 10.07" = 9" c/c Finally use #3 @ 9" c/c (#10 @ 225 mm c/c). Ma, neg = 2.67 ft. K = 32.04 in.k Let a= 0.2d = 0.2×4 = 0.8in A. 267 ×12/ 30.9 × 40× (4- (0.8/2)) 3= 0.24in2

Step No: 4
Design:
Asimin = 0.002 bby = 0.002 × 12 × 5 = 0.12in²

$$a = A_{3min} \frac{f_{3}}{6} \frac{1}{685f(b)}$$

 $= 0.12 \times 40 \frac{1}{(0.85 \times 3 \times 12)} = 0.1561n$
 $\oint M_{n(min)} = \oint A_{5min} \frac{f_{3}}{6} \frac{1}{(a-a_{12})}$
 $= 0.9 \times 0.12 \times 40 \times (4-0.156/2) = 16.94 \text{ in . K}$
(capacity provided by Asimin).
 $\oint M_{n(min)}$ is greater than $M_{b_{1}}pas_{3}(d_{1-H})$ but less than
 $M_{a, neg}$ and $M_{a, pos, (d_{1+H})}$.
 $M_{b, pos, (d_{1+H})} = 0.712 \text{ ft} \cdot \text{K} = 8.544 \text{ in . K} < \oint M_{n(min)}$
Therefore, $A_{5min} = 0.12in^{4}$ governs
 $(Jsing) \frac{3}{8} = \oint (\frac{1}{16}) \frac{5}{6} \pm 10, 10mm \frac{3}{6}$ with bar area
 $A_{b=0.11 \text{ in}^{4}}$
Spacing = $(0.11/_{0.12}) \times 12 = 11^{4}$
Movimum spacing according to ACI 13.3.2 for two
say slab is;
 $2h_{J} = 2 \times S = 10^{11}$
Therefore maximum spacing $\frac{9}{6} 10^{4}$ governs.

Manney =
$$G_{a}$$
, neg × W_{a} × l_{a}^{a}
= 0.088 × 0.211 × 12² = 2.67 ft · K = 32.04 m.K
Manney = C_{a} , neg × W_{a} × l_{a}^{a} =
= 0 × 0.211 × 16² = 0 ft · K
Mappos, d1 = C_{a} , pos, d1 × W_{a} , d1 × la⁶
= 0.048 × 0.147 × 12² = 1.016 ft · K = 12.19 m.K
Ma, pos, d1 = C_{b} , pos, d1 × W_{a} , d1 × la⁵
= 0.012 × 0.147 × 16² = 0.45 ft · K = 5.42 m.K
Ma, pos, l1 = C_{a} , pos, l1 × W_{a} , d1 × la²
= 0.055 × 0.064 × 12² = 0.51 ft · K = 6.12 m.K
Mb, pos, l1 = C_{b} , pos, l1 × W_{a} , l1 × lb²
= 0.016 × 0.064 × 16²
= 0.262 ft · K = 3.144 m.K.
Therefore finally we have;
Ma, neg = 2.67 ft · K = 32.04 m.K
Mb, neg = 0 ft · K
Ma, pos, (d1 + 11) = 1.016 + 0.51 = 1.53 ft · K = 18.36 m.K
Mb, pos (d1 + 11) = 0.45 + 0.262 = 0.712 ft · K = 8.544 m.K

Where $C_a, C_b = tabulated$ moment coefficients as given in Appendix, A. $W_{\underline{u}} = Ultimate$ uniform load, psf la. $l_b = length 2$ clear spans in short and long directions respectively. Therefore, for the design problem under discussion. $m = la/l_b$ $m = 12/l_b = 0.75$

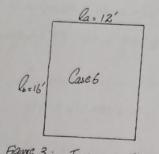


Figure 3: Two way slab (S.)

	: Moment Case #			
Coefficients for negative moments in slabs				
Ca, neg	Co, dig	Chiai	Cari	Cb,11
0.088 0	0.048	0.012	0.055	0.016

Refer to tables 12.3 to 12.6 of Nilson 12+ Ed.

2. Design of Slab2, S2:

6 2. Design of Slab, S., Step No.1 : Sizes ly Ca = 16/12 = 1.33 < 2 Hence Two way slab Formula for Minimum depth of two way Slab; hmin = Perimeter/180 hain = 2x (16+12) +12/180 = 3.73in Assume h = 5" Step No. 2 : Loads Factored load (www) = Wudi + Wull Wu= 1.20.6 + 1.66.6 From previous data; D.L= 0.1225 6.6 = 0.04 Wu = (1.2 x 0.1225) + (1.6 x 0.04) Wa = 0.211 Ksf

Step No: 3

Analysis:-

Ma, pos, (d1+11) = Ma, pos, d1 + Ma, pos, 11 = Ca, pos, d1 × Wu, d1 × la² + Ca, pos, 11 × Wu, 11 × la²

Mosposs (disil) = Mosposs, di + Mospos, II = Cospos, di x Wu, di xla

Maney = Caney wulat M. nes = Coiney Wulat Therefore 6" spacing is ok. \Rightarrow Maximum spacing for shrinkage steel in one way slab according to ACI. 7.12.2 is minimum g_3 ; (i) $Sh_f = 5 \times 5 = 25^{\circ}$ (ii) 18''

Therefore q' spacing is ox.

Using
$$\frac{1}{2} \oint (\#4) \frac{1}{2} \frac{1}{2} \frac{1}{3}, 13 \text{ mm} \frac{3}{5}, \text{ with bar area}$$

 $Ab = 0.20 \text{ in}$.
Spacing = area $\frac{9}{6}$ one bar = Ab/A_{5}
 $= \left[0.20 \text{ in}^{2} / 0.160 (\text{in}^{2}/\text{H}) \right] \times 12 = 15 \text{ in}$.
Using $\frac{3}{8} \oint (\#3) \frac{5}{6} \#10, 10 \text{ mm} \frac{3}{5} \text{ with bar area} Ab = 0.11 \text{ in}^{4}$
 $Spacing = Area \frac{9}{6} \text{ one bar } Ab/A_{5}$
 $= \left[0.11 \text{ in}^{2} / 0.160 (\text{ in}^{2}/\text{H}) \right] \times 12 = 7.5^{n} = 5^{n}$
Finally use $\#3 \oplus 6^{n} C/C (\#10 \oplus 150 \text{ mm} C/C)$.
Shrinkage steel or temperature steel (Arc).
 $Aut = 0.002 \text{ bh}_{5}$.
 $Aut = 0.002 \text{ bh}_{5}$.
 $Aut = 0.002 \text{ kl} \times 54 = 0.12 \text{ in}^{3}$
Using $\frac{3}{8}^{n} \oint (\#3) \frac{5}{6} \#10, 10 \text{ mm} \frac{3}{5}, \text{ with bar area}, Ab = 0.11 \text{ in}^{4}$
 $Spacing = Area \frac{9}{6} \text{ one bar } (Ab/A_{5min})$
 $= (0.11/0.12) \times 12 = 11^{n} \text{ C}/C$.
Finally use $\#3 \oplus 9^{n} \text{ or } (\#10 \oplus 225 \text{ mm} \text{ c}/C)$.
Shrinkage steel of $ACI = 7.65$ is minimum $\frac{9}{6}$
 $U = 3H = 3x5 + 15^{n}$

Step No: 4
Design
Asmin = 0.002 bhf (for Sy 40 ksi, ACI 10.5.4).
= 0.002 x12x 5 = 0.12in²

$$a = Asmin fg / (0.85 f_{0})$$

= 0.12 x 40/ (0.85 x 3x12) = 0.156 mm
 $\oint M_n(min) = \oint Asmin fy (d - a_{12})$
= 0.9 x 0.12 x 40x (4 - 0.156/2)
= 16.94 in k < My
Therefore,
As = Mu / {p fg (d - a_{2})}
Take $a = 0.2d$
 $As = 2a.44 / {0.9 x 40 x (4 - (0.2x4)/2)}$

$$\Rightarrow \alpha = 0.173 \times 40 / (0.85 \times 3 \times 12) = 0.226 in$$

$$A_{s} = 22.44 / \frac{5}{2} 0.9 \times 40 \times (4 - 0.226 / 2)^{\frac{3}{2}}$$

$$= 0.160 in^{2}$$

2 Therefore take hg = 5" for finding 'd . d- hg - 0.75 - (3/8)/2 = 4"

Step No: 2 Loading:

	Table: 1	·1 Dead	loads
Material	Thickness (in)	Y (KCS)	load = Yx thickness (p)
Slab	.5	0.15	0.15 x (5/12)=0.062
Mud	4	0.12	0.12x (4x12)=0.04
Brick Tile	2	0.12	0.12 x (2/12)=0.02

Service Dead Load (D.L) = 0.0625 + 0.04 + 0.02= 0.1225 Ksf Service Live Load (L.L) = 40 psf or 0.04 Ksf Factored Load $(w_w) = 1.20.L + 1.6L.L$ = 12x 0.1225 + 1.6 × 0.04

Factorel Load (www) = 0.211 Kst.

Step No: 3 Analysis: Mu= wul's (l= span length of slab) Mu= 0.211 x 9.92 = 2.59 ft. x/tt = 31 in. K / + t.