[bookmark: _e9d0jdpjn4v8][bookmark: _Hlk44169556]Name: M Zoraiz Ali
[bookmark: _pqi1smdh4ntq][bookmark: _rglxqgpzom2t]ID:14413
Subject: Data Mining
Teacher Name: Zain Shaukat
Semester: 7th Semester Final

Q1. Implement a code of Genetic Algorithm in any language and show the output
Answer:
#include <bits/stdc++.h>
[bookmark: _6e29txdtp06o]using namespace std;
[bookmark: _n0dc716gul2p]
[bookmark: _nbtoomp1z2zm]// Number of individuals in each generation
[bookmark: _90hoaxtendnv]#define POPULATION_SIZE 100
[bookmark: _mw589v2qvpnu]
[bookmark: _vb6p1ixnzh3]// Valid Genes
[bookmark: _blgbm01sd4bj]const string GENES = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP"\
[bookmark: _rn4bylosnav4]"QRSTUVWXYZ 1234567890, .-;:_!\"#%&/()=?@${[]}";
[bookmark: _pcrtuem8xtup]
[bookmark: _879xrs1e4llg]// Target string to be generated
[bookmark: _xtidavwbt9sh]const string TARGET = "Pakistan Zindabad";
[bookmark: _i2rb0tt165mt]
[bookmark: _wzowiz5qh67e]// Function to generate random numbers in given range
[bookmark: _rtdna1pk4kx0]int random_num(int start, int end)
[bookmark: _wlm6j33qtalu]{
[bookmark: _icrvj5tmyt4t] int range = (end-start)+1;
[bookmark: _t6fa1i2lseqp] int random_int = start+(rand()%range);
[bookmark: _6kebqy7sbr1u] return random_int;
[bookmark: _d2yct8wz8xmi]}
[bookmark: _wb9ij1ftbwyr]
[bookmark: _5gg2wb5v6z10]// Create random genes for mutation
[bookmark: _i24grfk15v9]char mutated_genes()
[bookmark: _r0cn8kwp9gqb]{
[bookmark: _ns08oppjmd9] int len = GENES.size();
[bookmark: _asdmg5phdfqj] int r = random_num(0, len-1);
[bookmark: _ys3dw587t5gf] return GENES[r];
[bookmark: _iliseqkf1uh6]}
[bookmark: _27pq8qobqwm]
[bookmark: _kmr8zlrxn3uh]// create chromosome or string of genes
[bookmark: _h7mvcklamb9s]string create_gnome()
[bookmark: _mn3iab4y1mf0]{
[bookmark: _vtyt80dxsmis] int len = TARGET.size();
[bookmark: _x0ztrupukdjl] string gnome = "";
[bookmark: _stqs9a7ak9un] for(int i = 0;i<len;i++)
[bookmark: _kkfrsq9rw8zg] gnome += mutated_genes();
[bookmark: _srgsncze3gtn] return gnome;
[bookmark: _17qs6ly7hnyz]}
[bookmark: _5wjttts2ipot]
[bookmark: _hhafezvkqe33]// Class representing individual in population
[bookmark: _b9gqft6iho1x]class Individual
[bookmark: _9ha33i9sr8ak]{
[bookmark: _tm4ibmr13v7s]public:
[bookmark: _bfy3ps71omrb] string chromosome;
[bookmark: _os4vk743vuhb] int fitness;
[bookmark: _vum2qnifycbz] Individual(string chromosome);
[bookmark: _naem6rgq9mtn] Individual mate(Individual parent2);
[bookmark: _nt16xtuynfz1] int cal_fitness();
[bookmark: _34j4af5xbgm]};
[bookmark: _s6ze89xm81px]
[bookmark: _wwf1mdyb9c]Individual::Individual(string chromosome)
[bookmark: _hcs60chxhbp]{
[bookmark: _qx6y8q8mdddf] this->chromosome = chromosome;
[bookmark: _rm43zind0rf9] fitness = cal_fitness();
[bookmark: _6cydsnyyc5q3]};
[bookmark: _22gez1xlv6v9]
[bookmark: _8ua312qemo6q]// Perform mating and produce new offspring
[bookmark: _i7duzbuxotwj]Individual Individual::mate(Individual par2)
[bookmark: _z69wol16x842]{
[bookmark: _179jook060h3] // chromosome for offspring
[bookmark: _7hytovlnz0o] string child_chromosome = "";
[bookmark: _dwzhjn7c28y0]
[bookmark: _syhj85jyr5ll] int len = chromosome.size();
[bookmark: _gqci0irchoh] for(int i = 0;i<len;i++)
[bookmark: _4he1c8yafyr] {
[bookmark: _jw567w9y6y01] // random probability
[bookmark: _9bmx0eefgirl] float p = random_num(0, 100)/100;
[bookmark: _1k8v1xne69pe]
[bookmark: _dgnyzbjcvo6j] // if prob is less than 0.45, insert gene
[bookmark: _wt77rnu29tcq] // from parent 1
[bookmark: _v1drem9n22hz] if(p < 0.45)
[bookmark: _qf44kx5ot5l] child_chromosome += chromosome[i];
[bookmark: _lnr392ptwklj]
[bookmark: _qo7mr7iy3n9v] // if prob is between 0.45 and 0.90, insert
[bookmark: _iqvpi2l3l9sa] // gene from parent 2
[bookmark: _x47mjo1xgwtd] else if(p < 0.90)
[bookmark: _mppg0lb3f3y1] child_chromosome += par2.chromosome[i];
[bookmark: _7qh2hakfvl4v]
[bookmark: _okhfy8gnmnm1] // otherwise insert random gene(mutate),
[bookmark: _ncuhroljkw5] // for maintaining diversity
[bookmark: _z705z8i2segm] else
[bookmark: _3iwodvfd0gje] child_chromosome += mutated_genes();
[bookmark: _lqg1ry4fddpj] }
[bookmark: _h59nn1jem4di]
[bookmark: _3lsmklxifgl0] // create new Individual(offspring) using
[bookmark: _9wixfe9mdigs] // generated chromosome for offspring
[bookmark: _99kwgl2od6xg] return Individual(child_chromosome);
[bookmark: _o7avhmi0e73v]};
[bookmark: _i2i5rsups3ob]
[bookmark: _7gs96n6cg32f]
[bookmark: _ibbrt571zsuy]// Calculate fittness score, it is the number of
[bookmark: _dsbg00qx9olv]// characters in string which differ from target
[bookmark: _fhjbobsyerer]// string.
[bookmark: _w1n03wmga2lo]int Individual::cal_fitness()
[bookmark: _4carf13z5g2i]{
[bookmark: _8v1p2h6f6iig] int len = TARGET.size();
[bookmark: _u58st9gu2gmw] int fitness = 0;
[bookmark: _f6dazcpr9312] for(int i = 0;i<len;i++)
[bookmark: _3581jrjst8gn] {
[bookmark: _tnk860gzrzi] if(chromosome[i] != TARGET[i])
[bookmark: _4qgeld22660y] fitness++;
[bookmark: _p2noulk7xd6v] }
[bookmark: _w63cnrdiu4ho] return fitness;
[bookmark: _h8xxwv9z8sq9]};
[bookmark: _rnf6qxe599l0]
[bookmark: _ovtekkdaf7al]// Overloading < operator
[bookmark: _ky2m3zhkiw0k]bool operator<(const Individual &ind1, const Individual &ind2)
[bookmark: _p2lzd5t7aj3w]{
[bookmark: _yxl408mgyl63] return ind1.fitness < ind2.fitness;
[bookmark: _587v5684xhgl]}
[bookmark: _vnk5pqb61tp5]
[bookmark: _uus03jocm69i]// Driver code
[bookmark: _xbh21g5c2c1d]int main()
[bookmark: _ubi42h8mmls6]{
[bookmark: _ri2ibbqbdpvl] srand((unsigned)(time(0)));
[bookmark: _ibbqwaj48q0l]
[bookmark: _e90nh57ccicq] // current generation
[bookmark: _wx3jca6m9gc8] int generation = 0;
[bookmark: _ugwk1t0785k]
[bookmark: _k1ukpe414kv6] vector<Individual> population;
[bookmark: _tclirvgaqwqp] bool found = false;
[bookmark: _6oxi83s61xf9]
[bookmark: _jpz80w3uwwiv] // create initial population
[bookmark: _65zzqky27rxx] for(int i = 0;i<POPULATION_SIZE;i++)
[bookmark: _iudsuj4v26cl] {
[bookmark: _khytya5f7zad] string gnome = create_gnome();
[bookmark: _px8fff8lzmtv] population.push_back(Individual(gnome));
[bookmark: _qd9qnj1lgepo] }
[bookmark: _19q36x69x60y]
[bookmark: _wn2f2yo3wrrb] while(! found)
[bookmark: _iulp7843hp7h] {
[bookmark: _qmjcj417r0w1] // sort the population in increasing order of fitness score
[bookmark: _rs9vmyjc39ur] sort(population.begin(), population.end());
[bookmark: _ip5780v49a86]
[bookmark: _rgog52jv5t1q] // if the individual having lowest fitness score ie.
[bookmark: _jytccw1hkicw] // 0 then we know that we have reached to the target
[bookmark: _3f5pxkdhsl1] // and break the loop
[bookmark: _7yzqrahj6bhe] if(population[0].fitness <= 0)
[bookmark: _k8ff7n5buvxn] {
[bookmark: _xxfbdivkpk9g] found = true;
[bookmark: _ja7bew8c96y] break;
[bookmark: _1650uu6toyc9] }
[bookmark: _fxnsrib3k1xp]
[bookmark: _8k9ma2clw3je] // Otherwise generate new offsprings for new generation
[bookmark: _l4ewoadomuey] vector<Individual> new_generation;
[bookmark: _y754pll8lx3q]
[bookmark: _7mi7v0uuti93] // Perform Elitism, that mean 10% of fittest population
[bookmark: _cph6zq2jxnia] // goes to the next generation
[bookmark: _hfjvblcuh5vv] int s = (10*POPULATION_SIZE)/100;
[bookmark: _h8583soczcd8] for(int i = 0;i<s;i++)
[bookmark: _4e0bfdjlnbhr] new_generation.push_back(population[i]);
[bookmark: _pp7b5qs5sqp9]
[bookmark: _pbhsr4b1x90j] // From 50% of fittest population, Individuals
[bookmark: _jjwj1cj2rxy3] // will mate to produce offspring
[bookmark: _ml5nleqohs11] s = (90*POPULATION_SIZE)/100;
[bookmark: _jxjrw8lcggt6] for(int i = 0;i<s;i++)
[bookmark: _lnw5unok80hn] {
[bookmark: _7gi1otogzfga] int len = population.size();
[bookmark: _suzscgh0dlg7] int r = random_num(0, 50);
[bookmark: _g83he3w86lv4] Individual parent1 = population[r];
[bookmark: _39dj1ah90pqd] r = random_num(0, 50);
[bookmark: _hz6yv31r2omu] Individual parent2 = population[r];
[bookmark: _z8xrvqf0wu3k] Individual offspring = parent1.mate(parent2);
[bookmark: _4zsrkzqen9yv] new_generation.push_back(offspring);
[bookmark: _28sdr3c2bn0o] }
[bookmark: _4lty0ibj5197] population = new_generation;
[bookmark: _1u1vfumv2xxk] cout<< "Generation: " << generation << "\t";
[bookmark: _mq6k8m7tq65] cout<< "String: "<< population[0].chromosome <<"\t";
[bookmark: _t18i8wh0kqlu] cout<< "Fitness: "<< population[0].fitness << "\n";
[bookmark: _im5ttktk5i]
[bookmark: _t9zku8f0m2h4] generation++;
[bookmark: _mi8utkdkku4] }
[bookmark: _f4bnq1jci250] cout<< "Generation: " << generation << "\t";
[bookmark: _nw7alal3v66j] cout<< "String: "<< population[0].chromosome <<"\t";
[bookmark: _ua7117jj7u63][bookmark: _iwa5l788yu19] cout<< "Fitness: "<< population[0].fitness << "\n"; }
Output:
[bookmark: _nb70xia101mr]Generation: 1 String: tO{"-?=jH[k8=B4]Oe@} Fitness: 18
[bookmark: _y7znk3ocgbw5][bookmark: _Hlk44167776]Generation: 2 String: tO{"-?=jH[k8=B4]Oe@} Fitness: 18
[bookmark: _z2t1o0f9y9ei]Generation: 3 String: .#lRWf9k_Ifslw #O$k_ Fitness: 17
[bookmark: _97m2u24eamc]Generation: 4 String: .-1Rq?9mHqk3Wo]3rek_ Fitness: 16
[bookmark: _gcktbik299sb]Generation: 5 String: .-1Rq?9mHqk3Wo]3rek_ Fitness: 16
[bookmark: _i5eq2aivv5om]Generation: 6 String: A#ldW) #lIkslw cVek) Fitness: 14
[bookmark: _lxdqipcd2us2]Generation: 7 String: A#ldW) #lIkslw cVek) Fitness: 14
[bookmark: _fzqc9tmz195f]Generation: 8 String: (, o x _x%Rs=, 6Peek3 Fitness: 13
[bookmark: _d65z5nyqntk] .
[bookmark: _ga71e6y2lrg8] .
[bookmark: _f6uwooh678xm] .
[bookmark: _a1nnle93e2v]Generation: 29 String: Pakistan Zindabad$ Fitness: 3
[bookmark: _27a1z2mzbe8l]Generation: 30 String: Pakistan Zindabad$ Fitness: 2
[bookmark: _nq9fys66gwty]Generation: 31 String: Pakistan Zindabad$ Fitness: 1
[bookmark: _ntz8s9or925g]Generation: 32 String: Pakistan Zindabad$ Fitness: 1
[bookmark: _tt1gwqfws1l2]Generation: 33 String: Pakistan Zindabad$ Fitness: 1
[bookmark: _xbay4h4bsvww]Generation: 34 String: Pakistan Zindabad$ Fitness: 0

Q2: Implement a code of Fuzzy logic in any language and show the output:
Answer:
#include <iostream>
#include <cmath>
#include <cstring>

const double cdMinimumPrice =0;
const double cdMaximumPrice =70;

using namespace std;

class CFuzzyFunction
{
protected :
	double dLeft, dRight;
	char cType;
	char* sName;

public:
	CFuzzyFunction(){};
	virtual ~CFuzzyFunction(){ delete [] sName; sName=NULL;}

	virtual void
	setInterval(double l,
	 double r)
	{dLeft=l; dRight=r;}

 virtual void
	setMiddle(double dL=0,
	 double dR=0)=0;

	virtual void
	setType(char c)
	{ cType=c;}

	virtual void
	setName(const char* s)
	{
	 sName = new char[strlen(s)+1];
	 strcpy(sName,s);
	}

	bool
	isDotInInterval(double t)
	{
		if((t>=dLeft)&&(t<=dRight)) return true; else return false;
	}

	char getType(void)const{ return cType;}

 void
 getName() const
	{
		cout<<sName<<endl;
	}

	virtual double getValue(double t)=0;
};

class CTriangle : public CFuzzyFunction
{
private:
	double dMiddle;

public:
	void
	setMiddle(double dL, double dR)
	{
		dMiddle=dL;
	}

	double
	getValue(double t)
	{
		if(t<=dLeft)
			return 0;
		else if(t<dMiddle)
			return (t-dLeft)/(dMiddle-dLeft);
		else if(t==dMiddle)
			return 1.0;
		else if(t<dRight)
		 return (dRight-t)/(dRight-dMiddle);
		else
			return 0;
	}
};

class CTrapezoid : public CFuzzyFunction
{
private:
	double dLeftMiddle, dRightMiddle;

public:
 void
	setMiddle(double dL, double dR)
	{
		dLeftMiddle=dL; dRightMiddle=dR;
	}

	double
	getValue(double t)
	{
		if(t<=dLeft)
	 return 0;
		else if(t<dLeftMiddle)
			return (t-dLeft)/(dLeftMiddle-dLeft);
		else if(t<=dRightMiddle)
			return 1.0;
		else if(t<dRight)
			return (dRight-t)/(dRight-dRightMiddle);
		else
		 return 0;
	}
};

int
main(void)
{
	CFuzzyFunction *FuzzySet[3];

	FuzzySet[0] = new CTrapezoid;
	FuzzySet[1] = new CTriangle;
	FuzzySet[2] = new CTrapezoid;

	FuzzySet[0]->setInterval(-5,30);
	FuzzySet[0]->setMiddle(0,20);
	FuzzySet[0]->setType('r');
	FuzzySet[0]->setName("low_price");

	FuzzySet[1]->setInterval(25,45);
	FuzzySet[1]->setMiddle(35,35);
	FuzzySet[1]->setType('t');
	FuzzySet[1]->setName("good_price");

	FuzzySet[2]->setInterval(40,75);
	FuzzySet[2]->setMiddle(50,70);
	FuzzySet[2]->setType('r');
	FuzzySet[2]->setName("to_expensive");

	double dValue;
 do
	{
	 cout<<"\nImput the value->"; cin>>dValue;

	 if(dValue<cdMinimumPrice) continue;
	 if(dValue>cdMaximumPrice) continue;

 for(int i=0; i<3; i++)
	 {
		 cout<<"\nThe dot="<<dValue<<endl;
		 if(FuzzySet[i]->isDotInInterval(dValue))
			 cout<<"In the interval";
		 else
			 cout<<"Not in the interval";
		 cout<<endl;

 cout<<"The name of function is"<<endl;
		 FuzzySet[i]->getName();
		 cout<<"and the membership is=";

		 cout<<FuzzySet[i]->getValue(dValue);
	 }
	}
	while(true);
	return 0;
}

Output:

[image:]

[bookmark: _yp9xc0hcvuyy]

Q3. Solve this using KNN.

Answer:
	Name
	Acid Durability
	Strength
	Class

	Type-A
	7
	7
	Bad

	Type-B
	7
	4
	Bad

	Type-C
	3
	4
	Good

	Type-D
	1
	4
	Good

Text Data Acid durability = 3
Strength=7, Class =?

Similarity = Calculate using measure like Euclidean.
d(p1q) = d (q1p) =
=

	NAME
	Acid Durability
	Strength
	Class
	Distance

	Type-A
	7
	7
	Bad
	Sqrt((7-3)²+(7-7)²)=4

	Type-B
	7
	4
	Bad
	5

	Type-C
	3
	4
	Good
	3

	Type-D
	1
	4
	Good
	3.4

Rank these attributes
We can Rank them according to Minimum Distance.
	NAME
	Acid Durability
	Strength
	Class
	Distance
	Rank

	Type-A
	7
	7
	Bad
	4
	3

	Type-B
	7
	4
	Bad
	5
	4

	Type-C (if k =1)
	3
	4
	Good
	3
	1

	Type-D (if k = 2)
	1
	4
	Good
	3.6
	2

Now if k = 1
Then Type-C will be its immediate neighbor, good.
[bookmark: _GoBack]If k = 2 Then Type-4 and Type-3 both will be immediate neighbors based on two neighbors.

[bookmark: _by0by16jchm1][bookmark: _dral8vi91fee]

Q4. Give solved example of hierarchical Clustering.
ANSWER:
Example: Agglomerative Hierarchical Clustering
Example of Complete Linkage Clustering

Grouping begins by figuring a separation between each pair of units that you need to bunch. A separation lattice will be symmetric (in light of the fact that the separation among x and y is equivalent to the separation among y and x) and will have zeroes on the corner to corner (on the grounds that each thing is separation zero from itself). The table underneath is a case of a separation framework. Just the lower triangle is appeared, on the grounds that the upper triangle can be filled in by reflection.

[image: distance matrix]
Now lets start clustering. The smallest distance is between three and five and they get linked up or merged first into a the cluster '35'.
 To acquire the new separation lattice, we have to evacuate the 3 and 5 sections, and supplant it by a passage "35" . Since we are utilizing finished linkage grouping, the separation among "35" and each other thing is the limit of the separation between this thing and 3 and this thing and 5. For instance, d(1,3)= 3 and d(1,5)=11. Along these lines, D(1,"35")=11. This gives us the new separation framework. The things with the littlest separation get grouped straightaway. This will be 2 and 4.
[image: distance matrix]
Proceeding along these lines, after 6 stages, everything is bunched. This is summed up beneath. On this plot, the y-pivot shows the separation between the articles at the time they were grouped. This is known as the bunch tallness. Various representations utilize various proportions of bunch tallness.
[image: complete linkage]
Complete Linkage
Below is the single linkage dendrogram for the same distance matrix. It starts with cluster "35" but the distance between "35" and each item is now the minimum of d(x,3) and d(x,5). So c(1,"35")=3.
[image: single linkage]
Single Linkage
Determining clusters
One of the problems with hierarchical clustering is that there is no objective way to say how many clusters there are.
If we cut the single linkage tree at the point shown below, we would say that there are two clusters.
[image: single linkage with cut]
However, if we cut the tree lower we might say that there is one cluster and two singletons.
[image: single linkage with cut]
There is no usually settled upon approach to choose where to cut the tree. How about we take a gander at some genuine information. In schoolwork 5 we consider quality articulation in 4 districts of 3 human and 3 chimpanzee minds. The RNA was hybridized to Affymetrix human quality articulation microarrays. We standardized the information utilizing RMA and did a differential articulation examination utilizing LIMMA. Here we chose the 200 most altogether differentially communicated qualities from the examination. We group all the differentially communicated qualities dependent on their mean articulation in every one of the 8 animal categories by mind area medicines
Here are the bunches dependent on Euclidean separation and relationship separation, utilizing total and single linkage grouping.
[image: Euclidean, Complete] [image: Euclidean, Single]
[image: Correlation, Complete] [image: Correlation, Single]
We can see that the grouping design for complete linkage separation will in general make minimized bunches of bunches, while single linkage will in general include each point in turn to the group, making long tacky bunches. As we would anticipate from our conversation of separations, Euclidean separation and connection separation produce altogether different dendrograms.
Progressive grouping doesn't disclose to us what number of bunches there are, or where to slice the dendrogram to shape bunches. In R there is a capacity cutttree which will cut a tree into bunches at a predefined stature. Nonetheless, in view of our representation, we may want to cut the long branches at various statures. Regardless, there is a decent measure of subjectivity in figuring out which branches ought to and ought not be sliced to frame separate groups.
Understanding the clusters
To comprehend the groups, we as a rule plot the log2(expression) estimations of the qualities in the bunch, or at the end of the day, plot the quality articulations over the examples. (The numbering in these diagrams are absolutely subjective.) Even however the medicines are unordered, I as a rule interface the focuses originating from a solitary component to make the example more clear. These are called profile plots.
Here is a portion of the profile plots from complete linkage bunching when we utilized Euclidean separation:

[image: hierarchical clustering comparisons, Euclidean distance]
These look very tightly packed. However, clusters 2 and 4 have genes with different up and down patterns, because they have about the same mean expression. Cluster 2 are very highly expressed genes.
Here's what we got when we use correlation distance:
[image: hierarchical clustering comparisons, Correlation distance]
These are a lot looser on the y-pivot since relationship centers around the articulation design, not the mean. In any case, all the qualities in a similar group have a pinnacle or valley in similar medicines (which are cerebrum areas by species mixes). Groups 1 and 2 are qualities that are separately higher or lower in the cerebellum contrasted with other cerebrum locales in the two species.
Selecting a gene list
On a fundamental level it is conceivable to bunch all the qualities, despite the fact that imagining a tremendous dendrogram may be tricky. Generally, some sort of primer examination, for example, differential articulation investigation is utilized to choose qualities for grouping. There are valid justifications to do as such, in spite of the fact that there are additionally a few admonitions.

Regularly in quality articulation, the separation metric utilized is relationship separation. Relationship separation is equivalent to focusing and scaling the information, and afterward utilizing Euclidean separation. When there are methodical treatment impacts, we expect the changeability of quality articulation from treatment to treatment to be a blend of precise treatment impacts and commotion. When there are no treatment impacts, the inconstancy of quality articulation is only because of commotion. Be that as it may, focusing and scaling the information puts all variabity on a similar scale. Subsequently qualities that show an example because of chance are not discernable from those that have a precise part.

As we have seen, connection separation has preferred natural understanding over Euclidean separation for quality articulation considers, however a similar scaling that makes it helpful for finding organically important examples of quality guideline presents deceptive outcomes for qualities that don't differentially communicate. Choosing qualities dependent on differential articulation investigation evacuates qualities which are probably going to have just possibility designs. This should upgrade the examples found in the quality bunches.

As an admonition, be that as it may, consider the impacts of quality determination on bunching tests or medicines. The chose qualities are those which test positive in differential articulation investigation. Utilization of those qualities to bunch tests is one-sided towards grouping the examples by treatment.

image5.png
11111

image6.png

image7.png
11111

image8.png

image9.png

image10.png
Height.

Correlation, Complete

58641 -contganaearde))
T e "

image11.png
Helight:

o om o

000

Correlation, Single

0811 - cotgenetieandE))
R -

image12.png
Cluster2

Cluster 1

T
o8 v

uoissadxa

8 v

18

Cluster 4.

Cluster 3

uossaidxe

18

18

image13.png
Cluster2

Cluster 1

[

uoissaidxa

)

seidro

18

18

Cluster 4.

Cluster 3

8 v

uossaidxe

18

18

image1.png
File Search View Project Erecute Tools A

og HE S |~ BRIEES €4 ©|8BO0B8 | %|dd)|meees sz cavic petease v
I @ [| grobais) v <

Project Classes Debug FUZZY main.cpp

0 @ Project3

le Window Hel

{
protected
double dLeft, dRight;

char the members|

dot-6
in the 1
— nane o
B good_price
d the member

The name of fu
to_expensive

and the membership is
Input the value-

[Shorten compile paths |~ Oucpuc Filenane exe

- output

- Compilation Time:

= >
lne 43 Cob 6 Seb 0 Lines 167 Length 2955 lnsert Done parsing in 0031 seconds

30PM
£ Type here to search)

27/06/2020

image2.png

image3.png

image4.png
11111

