Final Term Assignment
 Probability Methods in Engineering

Time Allowed: 6 hours
Marks: 50

Note: Attempt all questions. Copying from Internet and one another is strictly prohibited. Such answers will be marked zero.

Q1. A man throws two fair dice, what is the conditional probability that the sum of the two dice will be 7 , given that

1. The sum is even
2. The sum is greater than 8
3. The two dice had the same outcome

Q2. Show that in a single throw of two dice, the probability of throwing more than 7 is equal to that of throwing less then 7 , and hence find the probability of throwing exactly 7 . State clearly what assumptions you are making.

Q3. : \mathbf{A} and \mathbf{B} play a game in which \mathbf{A}^{\prime} 's probability of winning is $2 / 3$. In a series of 8 games, what is the probability that \mathbf{A} will win

1. Exactly 4 games
2. At least 4 games
3. From 3 to 6 games

Q4. Let $\mathrm{C} 1, \mathrm{C} 2, \cdots, \mathrm{CMC1}, \mathrm{C} 2, \cdots, \mathrm{CM}$ be a partition of the sample space SS , and $A A$ and $B B$ be two events. Suppose we know that

- A and B are conditionally independent given C_{i}, for all $i \in\{1,2, \cdots, M\}$
- $\quad B$ is independent of all $\mathrm{C}_{\mathrm{i}} \mathrm{s}$.

Prove that A and B are independent.

Q5. Derive the binomial distribution and find its mean and variance.
Q6. Differentiate between Bi-nominal frequency distribution and Bi -nominal distribution with the help of formulas?

Q7. Below, you will find the mean and standard deviation of several data sets. You're interested in comparing each data set - however, each data set has a different mean, standard deviation and sample size. Find the coefficient of variation for each data set in the table below. Round to the nearest tenth.

Measure	Data Set A	B	C	D
Mean	45	60	50	25
SD	3	11	5	15
Sample Size	1500	3200	500	2700

Student Name: Kiramat Ullah
ID: 13290
Semester: 8th
Department: BE(E)
Subject: Probability Methods In Engineering
Teacher : Sir Dawood

Question No 1
Answer
Q1 A man throws two fair dice what is the conditional probability that the sum of the two dice will be 7 , given that

1) The sum is even
2) The sum is greater than 8
3) The two dice had the same outcome.
Solution:-
let $A=\{$ sum is seven $\}$
$B=$ \{ Sum is even \}
$C=\{$ sum is greater then 83\}
$D=\{2$ dice came citconet

$$
\begin{aligned}
& A=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \\
& B=\{(2,2),(2,6),(4,2),(6,2) \ldots\}
\end{aligned}
$$

$$
\begin{gathered}
C=\{(6,6),(6,4)\} \\
D=\{(1,1),(2,2),(4,4),(6,6)\} \\
P(A)=\frac{6}{36} \\
P(B)=\frac{4}{36} \\
P(C)=\frac{2}{36} \\
P(D)=\frac{4}{36} \\
P(A \cap B)=\Phi / 36=\Phi=0 \\
P(A \cap C)=\frac{\Phi}{36}=\Phi=0 \\
P(A \cap D)=\frac{Q}{36}=\Phi=0
\end{gathered}
$$

Hence $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0}{4 / 36}=0$

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{0}{2 / 36}=0
$$

$$
P(A / D)=\frac{P(A \cap D)}{P(D)}=\frac{0}{4 / 36}=0
$$

The result show that probability is zero in case given.

Question No
Answer
Q2 Snow that in a single throw of two dice, the Probability 07 is throwing more that 7 is equal. to that on throw Find the probability 07 throwing exactly 7 . state clearly what assumptions you are making.
thy/ When we are rolling two dice, there are 36 different combination counting these up. There are 15 possibilities less than $7:$
$(1,1),(1,2),(1,3),(1,4),(1,5),(2,1)$
$(2,2),(2,3),(2,4),(3,7),(3,2),(3,3)$
$(4,1),(4,2),(5,1)$. The probability
07 getting less then 7 is
$\frac{15}{36}=\frac{5}{12}$
QO ReoMn Nóteq proare 6 possible combinations © AI QUAD CAMERA

Kiramatullah
of getting a 7 : $(1,6),(2,5),(3,4)$ $(4,3),(5,2),(6,1)$ which gives a probability 07

$$
\frac{6}{36}=\frac{1}{6}
$$

This means that 21 possibilities account for getting less than or equal to 7 , so there are 15 remaining possibilities of getting more than 7. This is the same as the probability 07 getting less then 7 .
so the probability must be $\frac{5}{12}$ as well. In calculating this 1 combination is equally likely to roll as any other and there fore the dice are fair, or else the calculations don't work.

Answer
Q3 A and B play a game which A's Probability of winning is $2 / 3$. In a series 078 games what is the probability that A will win.

1) Exactly 4 Games
2) At least 4 Games
3) From 3 to 6 Games

Solution:-
Given that $P=2 / 3 \quad n=8$

$$
\begin{array}{r}
q=1-p \\
=1-q / 3 \\
q=\frac{1}{3}
\end{array}
$$

let " x " denotes the number of games won by A, Then
i) $P(x=4)$

$$
=(8 / 4)\left(\frac{2}{3}\right)^{4}(1 / 3)^{4}
$$

$$
\begin{aligned}
& =\frac{1120}{6561} \\
& =0.1707
\end{aligned}
$$

ii) $P(x \geqslant 4)$

$$
\begin{aligned}
& =1-p(x<4) \\
& =1-\sum_{x=0}^{3}\binom{8}{x}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{8-x} \\
& =1-\left[\left(\frac{1}{3}\right)^{8}+8\left(\frac{2}{3}\right)(1 / 3)^{7}+28\left(\frac{2}{3}\right)^{2}(1 / 3)^{6}+\right. \\
& \left.=56\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{5}\right] \\
& =1-\frac{1}{6561}[1+16+112+448] \\
& =1-\frac{577}{6561} \\
& =\frac{6561-577}{6561} \\
& =\frac{5984}{6561} \\
& =0.9121
\end{aligned}
$$

iii) $P(3 \leqslant x \leqslant 6)$

$$
\begin{aligned}
& =\sum_{x=3}^{6}\binom{8}{x}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{8-x} \\
& =\binom{8}{3}(2 / 3)^{3}\binom{1}{3}+\binom{8}{4}(2 / 3)^{4}+\left(\frac{8}{5}\right)(2 / 3)^{5} \\
& =(1 / 3)^{3}+\binom{8}{6}(2 / 3)^{6}(1 / 3)^{2} \\
& =\frac{8}{(3)^{8}}[56+140+224+224) \\
& =\frac{8 \times 644}{6561}=\frac{5152}{6561}=0.7852
\end{aligned}
$$

Ans.

Ques Pion NO 4
Answer
Q44 Let $C_{1}, C_{2}, \cdots, C_{M C 1}, C_{2}, \cdots C M$ be a partition of the sample space $S S$, and $A A$ and $B B$ be two events, Suppose we know that

1) A and B are conditionally independent given C, for all $i \in(1,2, \ldots, M)$
2) B is independent of all $C_{i} \cdot s$ prove that A and B are in dependent.
Ans11 Proof:-
sine the Ci's form a partition of the sample. space, we can apply the law of total probability for ADB.

$$
\begin{aligned}
& P(A \cap B)=\sum_{i=1}^{M} P\left(A \cap B / C_{i}\right) P\left(C_{i}\right) \\
& P(A \cap B)=\sum_{i=1}^{M} P\left(A / C_{i}\right) P\left(B / C_{i}\right) P\left(C_{i}\right)
\end{aligned}
$$

(A and B are conditionally independent)

$$
P(A \cap B)=\sum_{i=1}^{M} P\left(A / C_{i}\right) P(B) P\left(C_{i}\right)
$$

$\because(B$ is independent of all Ci's)

$$
\begin{aligned}
& P(A \cap B)=P(B) \sum_{i=1}^{M} P\left(A / C_{i}\right) P\left(C_{i}\right) \\
& P(A \cap B)=P(B) P(A)
\end{aligned}
$$

\because (Law of total probability) Hence, A and B are Independent.

Ans

Question No 5
Answer
Q5 Derive the binomial distribution and find its mean and variance.
Solution:-
Mean ε_{1} variance of binomial random variable

The probability function for binomial

$$
b(x ; n, p)=\binom{n}{x} P^{x}(1-P)^{n-2}
$$

This is the probability at having x successes in a series of probability of success is any one of the trial is P. if x is a random variable with the probability distribution.

$$
E(x)=\sum_{z=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Since $x=0$ term vanishes let $y=x-1 \quad$ \& $\quad m=n-1 \quad$ subbing $n=y=1$ \& $n=m+1$ into the last sum

$$
\begin{array}{rl}
y & y=x-z \quad \varepsilon_{1} \quad m=n-2 \\
& E(x(x-1))^{m}=\sum_{x=0}^{m(x-1)\binom{n}{x} p^{x}(1-p)^{n-x}} \\
=\sum_{x=2}^{n} \frac{n!}{(n-2)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{n=2}^{n} \frac{(n-2)!}{(n-2)(n-x)!} p^{x-1}(1-p)^{n} \\
& =n(n-1) p^{2}\left(p+(1-p)^{m}\right. \\
& =n(n-1) P^{2}
\end{array}
$$

So the variance of x axis

$$
\begin{aligned}
&\left(x^{2}\right)-E\left(x^{4}\right)=E^{\prime}(x(x-1)+E(x) \\
& E\left(x^{2}\right)=\left(n(n-1) p^{2}+n p-(n p)\right. \\
& E(x)=\sum_{y=0}^{n} \frac{(m+1)!}{y!(m-y)!} p^{y+1}(1-p)^{m-y} \\
&=(m+1) P \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y}
\end{aligned}
$$

$$
n p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{4}(1-p)^{m-y}
$$

By binomial theosem

$$
(a+b)^{m}=\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} a^{4} b^{m-y}
$$

set $a=\varphi \quad \xi \quad b=1-p$

$$
\begin{aligned}
\sum_{y=0}^{m} & \frac{m!}{y!(m-y)} p y(1-p)^{m-y} \\
& =(a+b)^{m} \\
& =(p+1-p)^{m} \\
& =1
\end{aligned}
$$

so that

$$
F(x)=n p
$$

Answers
Q6 Differentiate between Binominal 7rearuency distribution and Bi-nominal distribution with The help of formulas?
tns/a) Bi-nominal Distribution:-
A binominal distribution can be though of as simply the probability of a success or Failure outcome in an experiment or survey that is repeated multiple times.

$$
P(x-x) F(x)={ }^{n} C_{x} p^{x} q^{n-x}
$$

b) Bi-nominal Frequency Distribution:I7 the binominal probability distribution is multiplied by N, the number of experiments or sets, the resulting distribution is known as the bi-nominal frequency Distribution. $N(n) p^{x} q^{n-x}$

Answer
QT
Ans Solution:-

- Cofficient of Variation:-
\Rightarrow For Data Set A:-

$$
\begin{aligned}
& C V=\frac{6}{3} \times 100 \\
& C V=\frac{3}{45} \times 100 \\
& C V=6.7
\end{aligned}
$$

\Rightarrow For Data Set B:-

$$
\begin{aligned}
& C V=\frac{11}{60} \times 100 \\
& C V=18.3
\end{aligned}
$$

\Rightarrow For Dataset C:-

$$
\begin{aligned}
& C V=\frac{5}{50} \times 100 \\
& C V=10
\end{aligned}
$$

\Rightarrow For Dat set $D:-$

$$
\begin{aligned}
& C V=\frac{15}{25} \times 100 \\
& C V=60
\end{aligned}
$$

Ans

