
Sessional Assignment
Data Mining

Marks: 20

NAME: SHEHARYAR TAHIR
ID# 13484

Note:

 Every student must do it yourself; Plagiarized assignment will not be acceptable.

 Make a Proper Word Document/ PDF or PowerPoint Presentation of this assignment, Picture will

not be acceptable.

 Must submit before deadline.

Complete the Machine Learning course at Coursera. Till 5th of June and show the result.

ANSWER:
Machine Learning Course from Coursera

Lecture 1: Introduction to Machine learning:
Machine learning is basically the science of getting computers to learn, without being explicitly
programmed. We probably use it dozens of times a day without even knowing it. Each time you
do a web search on Google or Bing that works so well because their machine learning software
has figured out how to rank what pages. When Facebook or Apple's photo application recognizes
your friends in your pictures, that's also machine learning. Each time you read your email and a
spam filter saves you from having to wade through tons of spam, again, that's because your
computer has learned to distinguish spam from non-spam email. So, that's machine learning.
There's a science of getting computers to learn without being explicitly programmed. One of the
research projects that I'm working on is getting robots to tidy up the house. How do you go about
doing that? Well what you can do is have the robot watch you demonstrate the task and learn
from that. The robot can then watch what objects you pick up and where to put them and try to
do the same thing even when you aren't there. For me, one of the reasons I'm excited about this is
the AI, or artificial intelligence problem. Building truly intelligent machines, we can do just
about anything that you or I can do. Many scientists think the best way to make progress on this
is through learning algorithms called neural networks, which mimic how the human brain works

Lecture 2: Supervised algorithm that is Linear Regression:

They have used some motivating example of predicting housing prices. They have used a data
set of housing prices from the city of Portland, Oregon. And they plot their data set of a number
of houses that were different sizes that were sold for a range of different prices. Let's say that
given this data set, we have a friend that's trying to sell a house and let's see if friend's house is
size of 1250 square feet and you want to tell them how much they might be able to sell the house
for. Well one thing we could do is fit a model. Maybe fit a straight line to this data. Looks
something like that and based on that, maybe you could tell your friend that let's say maybe he
can sell the house for around $220,000. So this is an example of a supervised learning algorithm.
And it's supervised learning because we're given the, quotes, "right answer" for each of our
examples. Namely they told what was the actual house, what was the actual price of each of the
houses in our data set were sold for and moreover, this is an example of a regression problem
where the term regression refers to the fact that we are predicting a real-valued output namely the
price. The other most common type of supervised learning problem is called the classification
problem where we predict discrete-valued outputs such as if we are looking at cancer tumors and
trying to decide if a tumor is malignant or benign. So that's a zero-one valued discrete output.
More formally, in supervised learning, they had a data set and this data set is called a training set.
So for housing prices example, we have a training set of different housing prices and our job is to
learn from this data how to predict prices of the houses. They used lower case m throughout this
course to denote the number of training examples. So in the data set, if we have, let's say 47 rows
in this table. Then we have 47 training examples and m equals 47. They use lowercase x to
denote the input variables often also called the features. That would be the x is here, it would the
input features. And used y to denote my output variables or the target variable to predict and so
that's the second column here. They used (x, y) to denote a single training example. So, a single
row in this table corresponds to a single training example and to refer to a specific training
example, they used this notation x(i) comma gives me y(i) And, we're going to use this to refer to
the ith training example. So this superscript i over here, this is not exponentiation right? This
(x(i), y(i)), the superscript i in parentheses that's just an index into my training set and refers to
the ith row in this table, okay? So this is not x to the power of i, y to the power of i. Instead (x(i),
y(i)) just refers to the ith row of this table. So for example, x(1) refers to the input value for the
first training example so that's 2104. That's this x in the first row. x(2) will be equal to 1416 right?
That's the second x and y(1) will be equal to 460. The first, the y value for my first training
example, that's what that (1) refers to. So as mentioned, occasionally I'll ask you a question to let
you check your understanding and a few seconds in this video a multiple-choice question will
pop up in the video. When it does, please use your mouse to select what you think is the right
answer. What defined by the training set is. So here's how this supervised learning algorithm
works. We saw that with the training set like our training set of housing prices and we feed that
to our learning algorithm. Is the job of a learning algorithm to then output a function which by
convention is usually denoted lowercase h and h stands for hypothesis And what the job of the
hypothesis is, is, is a function that takes as input the size of a house like maybe the size of the
new house your friend's trying to sell so it takes in the value of x and it tries to output the
estimated value of y for the corresponding house. So h is a function that maps from x's to y's.
People often ask me, you know, why is this function called hypothesis. Some of you may know
the meaning of the term hypothesis, from the dictionary or from science or whatever. It turns out

that in machine learning, this is a name that was used in the early days of machine learning and it
kinda stuck. 'Cause maybe not a great name for this sort of function, for mapping from sizes of
houses to the predictions, that you know...

When designing a learning algorithm, the next thing we need to decide is how do we
represent this hypothesis h. For this they choose their initial choice , for representing the
hypothesis, will be the following. We're going to represent h as follows. And we will write this
as h<u>theta(x) equals theta<u>0</u></u> plus theta<u>1 of x. And as a shorthand, sometimes
instead of writing, you</u> know, h subscript theta of x, sometimes there's a shorthand, they just
write as a h of x. But more often I'll write it as a subscript theta over there. And plotting this in
the pictures, all this means is that, we are going to predict that y is a linear function of x. Right,
so that's the data set and what this function is doing, is predicting that y is some straight line
function of x. That's h of x equals theta 0 plus theta 1 x, okay? And why a linear function? Well,
sometimes we'll want to fit more complicated, perhaps non-linear functions as well. But since
this linear case is the simple building block, we will start with this example first of fitting linear
functions, and we will build on this to eventually have more complex models, and more complex
learning algorithms. Let me also give this particular model a name. This model is called linear
regression or this, for example, is actually linear regression with one variable, with the variable
being x. Predicting all the prices as functions of one variable X. And another name for this model
is univariate linear regression. And univariate is just a fancy way of saying one variable. So,
that's linear regression

Lecture 3: Linear Algebra Review:

A matrix is a rectangular array of numbers written between square brackets. So, for example,
here is a matrix on the right, a left square bracket. And then, write in a bunch of numbers. These
could be features from a learning problem or it could be data from somewhere else, but the
specific values don't matter, and then I'm going to close it with another right bracket on the right.
And so that's one matrix. And, here's another example of the matrix, let's write 3, 4, 5,6. So
matrix is just another way for saying, is a 2D or a two dimensional array. And the other piece of
knowledge that we need is that the dimension of the matrix is going to be written as the number
of row times the number of columns in the matrix. So, concretely, this example on the left, this
has 1, 2, 3, 4 rows and has 2 columns, and so this example on the left is a 4 by 2 matrix - number
of rows by number of columns. So, four rows, two columns. This one on the right, this matrix
has two rows. That's the first row, that's the second row, and it has three columns. That's the first
column, that's the second column, that's the third column So, this second matrix we say it is a 2
by 3 matrix. So we say that the dimension of this matrix is 2 by 3. Sometimes you also see this
written out, in the case of left, you will see this written out as R4 by 2 or concretely what people
will sometimes say this matrix is an element of the set R 4 by 2. So, this thing here, this just

means the set of all matrices that of dimension 4 by 2 and this thing on the right, sometimes this
is written out as a matrix that is an R 2 by 3. So if you ever see, 2 by 3. So if you ever see
something like this are 4 by 2 or are 2 by 3, people are just referring to matrices of a specific
dimension. Next, let's talk about how to refer to specific elements of the matrix. And by matrix
elements, other than the matrix I just mean the entries, so the numbers inside the matrix. So, in
the standard notation, if A is this matrix here, then A sub-strip IJ is going to refer to the i, j entry,
meaning the entry in the matrix in the ith row and jth column. So for example a1-1 is going to
refer to the entry in the 1st row and the 1st column, so that's the first row and the first column
and so a1-1 is going to be equal to 1, 4, 0, 2. Another example, 8 1 2 is going to refer to the entry
in the first row and the second column and so A 1 2 is going to be equal to one nine one. This
come from a quick examples. Let's see, A, oh let's say A 3 2, is going to refer to the entry in the
3rd row, and second column, right, because that's 3 2 so that's equal to 1 4 3 7. And finally, 8 4 1
is going to refer to this one right, fourth row, first column is equal to 1 4 7 and if, hopefully you
won't, but if you were to write and say well this A 4 3, well, that refers to the fourth row, and the
third column that, you know, this matrix has no third column so this is undefined, you know, or
you can think of this as an error. There's no such element as 8 4 3, so, you know, you shouldn't
be referring to 8 4 3. So, the matrix gets you a way of letting you quickly organize, index and
access lots of data. In case I seem to be tossing up a lot of concepts, a lot of new notations very
rapidly, you don't need to memorize all of this, but on the course website where we have posted
the lecture notes, we also have all of these definitions written down. So you can always refer
back, you know, either to these slides, possible coursework, so audible lecture notes if you forget
well, A41 was that? Which row, which column was that? Don't worry about memorizing
everything now. You can always refer back to the written materials on the course website, and
use that as a reference. So that's what a matrix is. Next, let's talk about what is a vector. A vector
turns out to be a special case of a matrix. A vector is a matrix that has only 1 column so you have
an N x 1 matrix, then that's a remember, right? N is the number of rows, and 1 here is the number
of columns, so, so matrix with just one column is what we call a vector. So here's an example of
a vector, with I guess I have N equals four elements here. so we also call this thing, another term
for this is a four dmensional vector, just means that this is a vector with four elements, with four
numbers in it. And, just as earlier for matrices you saw this notation R3 by 2 to refer to 2 by 3
matrices, for this vector we are going to refer to this as a vector in the set R4. So this R4 means a
set of four-dimensional vectors. Next let's talk about how to refer to the elements of the vector.
We are going to use the notation yi to refer to the ith element of the vector y. So if y is this vector,
y subscript i is the ith element. So y1 is the first element,four sixty, y2 is equal to the second
element, two thirty two -there's the first. There's the second. Y3 is equal to 315 and so on, and
only y1 through y4 are defined consistency 4-dimensional vector. Also it turns out that there are

actually 2 conventions for how to index into a vector and here they are. Sometimes, people will
use one index and sometimes zero index factors. So this example on the left is a one in that
specter where the element we write is y1, y2, y3, y4. And this example in the right is an example
of a zero index factor where we start the indexing of the elements from zero. So the elements go
from a zero up to y three. And this is a bit like the arrays of some primary languages where the
arrays can either be indexed starting from one. The first element of an array is sometimes a Y1,
this is sequence notation I guess, and sometimes it's zero index depending on what programming
language you use. So it turns out that in most of math, the one index version is more common
For a lot of machine learning applications, zero index vectors gives us a more convenient
notation. So what you should usually do is, unless otherwised specified, you should assume we
are using one index vectors. In fact, throughout the rest of these videos on linear algebra review,
I will be using one index vectors. But just be aware that when we are talking about machine
learning applications, sometimes I will explicitly say when we need to switch to, when we need
to use the zero index vectors as well. Finally, by convention, usually when writing matrices and
vectors, most people will use upper case to refer to matrices. So we're going to use capital letters
like A, B, C, you know, X, to refer to matrices, and usually we'll use lowercase, like a, b, x, y, to
refer to either numbers, or just raw numbers or scalars or to vectors. This isn't always true but
this is the more common notation where we use lower case "Y" for referring to vector and we
usually use upper case to refer to a matrix. So, you now know what are matrices and vectors.

.

Lecture 4: Linear Regression with Multiple Variables:

If we had not only the size of the house as a feature or as a variable of which to try to predict the
price, but that we also knew the number of bedrooms, the number of house and the age of the
home and years. It seems like this would give us a lot more information with which to predict the
price. To introduce a little bit of notation, we sort of started to talk about this earlier, I'm going to
use the variables X subscript 1 X subscript 2 and so on to denote my, in this case, four features
and I'm going to continue to use Y to denote the variable, the output variable price that we're
trying to predict. Let's introduce a little bit more notation. Now that we have four features I'm
going to use lowercase "n" to denote the number of features. So in this example we have n4
because we have, you know, one, two, three, four features. And "n" is different from our earlier
notation where we were using "n" to denote the number of examples. So if you have 47 rows
"M" is the number of rows on this table or the number of training examples. So I'm also going to
use X superscript "I" to denote the input features of the "I" training example. As a concrete
example let say X2 is going to be a vector of the features for my second training example. And
so X2 here is going to be a vector 1416, 3, 2, 40 since those are my four features that I have to
try to predict the price of the second house. So, in this notation, the superscript 2 here. That's an
index into my training set. This is not X to the power of 2. Instead, this is, you know, an index
that says look at the second row of this table. This refers to my second training example. With
this notation X2 is a four dimensional vector. In fact, more generally, this is an in-dimensional
feature back there. With this notation, X2 is now a vector and so, I'm going to use also Xi
subscript J to denote the value of the J, of feature number J and the training example. So
concretely X2 subscript 3, will refer to feature number three in the x factor which is equal to
2,right? That was a 3 over there, just fix my handwriting. So x2 subscript 3 is going to be equal
to 2. Now that we have multiple features, let's talk about what the form of our hypothesis should
be. Previously this was the form of our hypothesis, where x was our single feature, but now that
we have multiple features, we aren't going to use the simple representation any more. Instead, a
form of the hypothesis in linear regression is going to be this, can be theta 0 plus theta 1 x1 plus
theta 2 x2 plus theta 3 x3 plus theta 4 X4. And if we have N features then rather than summing

up over our four features, we would have a sum over our N features. Concretely for a particular
setting of our parameters we may have H of X 80 + 0.1 X1 + 0.01x2 + 3x3 - 2x4. This would be
one example of a hypothesis and you remember a hypothesis is trying to predict the price of the
house in thousands of dollars, just saying that, you know, the base price of a house is maybe
80,000 plus another open 1, so that's an extra, what, hundred dollars per square feet, yeah, plus
the price goes up a little bit for each additional floor that the house has. X two is the number of
floors, and it goes up further for each additional bedroom the house has, because X three was the
number of bedrooms, and the price goes down a little bit with each additional age of the house.
With each additional year of the age of the house. Here's the form of a hypothesis rewritten on
the slide. And what I'm gonna do is introduce a little bit of notation to simplify this equation. For
convenience of notation, let me define x subscript 0 to be equals one. Concretely, this means that
for every example i I have a feature vector X superscript I and X superscript I subscript 0 is
going to be equal to 1. You can think of this as defining an additional zero feature. So whereas
previously I had n features because x1, x2 through xn, I'm now defining an additional sort of
zero feature vector that always takes on the value of one. So now my feature vector X becomes
this N+1 dimensional vector that is zero index. So this is now a n+1 dimensional feature vector,
but I'm gonna index it from 0 and I'm also going to think of my parameters as a vector. So, our
parameters here, right that would be our theta zero, theta one, theta two, and so on all the way up
to theta n, we're going to gather them up into a parameter vector written theta 0, theta 1, theta 2,
and so on, down to theta n. This is another zero index vector. It's of index signed from zero. That
is another n plus 1 dimensional vector. So, my hypothesis cannot be written theta 0x0 plus theta
1x1+ up to theta n Xn. And this equation is the same as this on top because, you know, eight zero
is equal to one. Underneath and I now take this form of the hypothesis and write this as either
transpose x, depending on how familiar you are with inner products of vectors if you write what
theta transfers x is what theta transfer and this is theta zero, theta one, up to theta N. So this thing
here is theta transpose and this is actually a N plus one by one matrix. [It should be a 1 by (n+1)
matrix] It's also called a row vector and you take that and multiply it with the vector X which is
X zero, X one, and so on, down to X n. And so, the inner product that is theta transpose X is just
equal to this. This gives us a convenient way to write the form of the hypothesis as just the inner
product between our parameter vector theta and our theta vector X. And it is this little bit of
notation, this little excerpt of the notation convention that let us write this in this compact form.
So that's the form of a hypthesis when we have multiple features. And, just to give this another
name, this is also called multivariate linear regression. And the term multivariable that's just
maybe a fancy term for saying we have multiple features, or multivariables with which to try to
predict the value Y.

Lecture 5: Octave/Matlab Tutorial:

In Octave. And that's my Octave prompt. Let me first show the elementary operations you can
do in Octave. So you type in 5 + 6. That gives you the answer of 11. 3 - 2. 5 x 8, 1/2, 2^6 is 64.
So those are the elementary math operations. You can also do logical operations. So one equals
two. This evaluates to false. The percent command here means a comment. So, one equals two,
evaluates to false. Which is represents by zero. One not equals to two. This is true. So that
returns one. Note that a not equal sign is this tilde equals symbol. And not bang equals. Which is
what some other programming languages use. Lets see logical operations one and zero use a

double ampersand sign to the logical AND. And that evaluates false. One or zero is the OR
operation. And that evaluates to true. And I can XOR one and zero, and that evaluates to one.
This thing over on the left, this Octave 324.x equals 11, this is the default Octave prompt. It
shows the, what, the version in Octave and so on. If you don't want that prompt, there's a
somewhat cryptic command PF quote, greater than, greater than and so on, that you can use to
change the prompt. And I guess this quote a string in the middle. Your quote, greater than,
greater than, space. That's what I prefer my Octave prompt to look like. So if I hit enter. Oops,
excuse me. Like so. PS1 like so. Now my Octave prompt has changed to the greater than, greater
than sign.Which, you know, looks quite a bit better. Next let's talk about Octave variables. I can
take the variable A and assign it to 3. And hit enter. And now A is equal to 3. You want to assign
a variable, but you don't want to print out the result. If you put a semicolon, the semicolon
suppresses the print output. So to do that, enter, it doesn't print anything. Whereas A equals 3.
mix it, print it out, where A equals, 3 semicolon doesn't print anything. I can do string
assignment. B equals hi Now if I just enter B it prints out the variable B. So B is the string hi C
equals 3 greater than colon 1. So, now C evaluates the true. If you want to print out or display a
variable, here's how you go about it. Let me set A equals Pi. And if I want to print A I can just
type A like so, and it will print it out. For more complex printing there is also the DISP
command which stands for Display. Display A just prints out A like so. You can also display
strings so: DISP, sprintf, two decimals, percent 0.2, F, comma, A. Like so. And this will print out
the string. Two decimals, colon, 3.14. This is kind of an old style C syntax. For those of you that
have programmed C before, this is essentially the syntax you use to print screen. So the Sprintf
generates a string that is less than the 2 decimals, 3.1 plus string. This percent 0.2 F means
substitute A into here, showing the two digits after the decimal points. And DISP takes the string
DISP generates it by the Sprintf command. Sprintf. The Sprintf command. And DISP actually
displays the string. And to show you another example, Sprintf six decimals percent 0.6 F comma
A. And, this should print Pi with six decimal places. Finally, I was saying, a like so, looks like
this. There are useful shortcuts that type type formats long. It causes strings by default. Be
displayed to a lot more decimal places. And format short is a command that restores the default
of just printing a small number of digits. Okay, that's how you work with variables. Now let's
look at vectors and matrices. Let's say I want to assign MAT A to the matrix. Let me show you
an example: 1, 2, semicolon, 3, 4, semicolon, 5, 6. This generates a three by two matrix A whose
first row is 1, 2. Second row 3, 4. Third row is 5, 6. What the semicolon does is essentially say,
go to the next row of the matrix. There are other ways to type this in. Type A 1, 2 semicolon 3, 4,
semicolon, 5, 6, like so. And that's another equivalent way of assigning A to be the values of this
three by two matrix. Similarly you can assign vectors. So V equals 1, 2, 3. This is actually a row
vector. Or this is a 3 by 1 vector. Where that is a fat Y vector, excuse me, not, this is a 1 by 3

matrix, right. Not 3 by 1. If I want to assign this to a column vector, what I would do instead is
do v 1;2;3. And this will give me a 3 by 1. There's a 1 by 3 vector. So this will be a column
vector. Here's some more useful notation. V equals 1: 0.1: 2. What this does is it sets V to the
bunch of elements that start from 1. And increments and steps of 0.1 until you get up to 2. So if I
do this, V is going to be this, you know, row vector. This is what one by eleven matrix really.
That's 1, 1.1, 1.2, 1.3 and so on until we get up to two. Now, and I can also set V equals one
colon six, and that sets V to be these numbers. 1 through 6, okay. Now here are some other ways
to generate matrices. Ones 2.3 is a command that generates a matrix that is a two by three matrix
that is the matrix of all ones. So if I set that c2 times ones two by three this generates a two by
three matrix that is all two's. You can think of this as a shorter way of writing this and c2,2,2's
and you can call them 2,2,2, which would also give you the same result. Let's say W equals one's,
one by three, so this is going to be a row vector or a row of three one's and similarly you can also
say w equals zeroes, one by three, and this generates a matrix. A one by three matrix of all zeros.
Just a couple more ways to generate matrices . If I do W equals Rand one by three, this gives me
a one by three matrix of all random numbers. If I do Rand three by three. This gives me a three
by three matrix of all random numbers drawn from the uniform distribution between zero and
one. So every time I do this, I get a different set of random numbers drawn uniformly between
zero and one. For those of you that know what a Gaussian random variable is or for those of you
that know what a normal random variable is, you can also set W equals Rand N, one by three.
And so these are going to be three values drawn from a Gaussian distribution with mean zero and
variance or standard deviation equal to one. And you can set more complex things like W equals
minus six, plus the square root ten, times, lets say Rand N, one by ten thousand. And I'm going
to put a semicolon at the end because I don't really want this printed out. This is going to be a
what? Well, it's going to be a vector of, with a hundred thousand, excuse me, ten thousand
elements. So, well, actually, you know what? Let's print it out. So this will generate a matrix like
this. Right? With 10,000 elements. So that's what W is. And if I now plot a histogram of W with
a hist command, I can now. And Octave's print hist command, you know, takes a couple seconds
to bring this up, but this is a histogram of my random variable for W. There was minus 6 plus
zero ten times this Gaussian random variable. And I can plot a histogram with more buckets,
with more bins, with say, 50 bins. And this is my histogram of a Gaussian with mean minus 6.
Because I have a minus 6 there plus square root 10 times this. So the variance of this Gaussian
random variable is 10 on the standard deviation is square root of 10, which is about what? Three
point one. Finally, one special command for generator matrix, which is the I command. So I
stands for this is maybe a pun on the word identity. It's server set eye 4. This is the 4 by 4
identity matrix. So I equals eye 4. This gives me a 4 by 4 identity matrix. And I equals eye 5, eye
6. That gives me a 6 by 6 identity matrix, i3 is the 3 by 3 identity matrix. Lastly, to wrap up this

video, there's one more useful command. Which is the help command. So you can type help i
and this brings up the help function for the identity matrix. Hit Q to quit. And you can also type
help rand. Brings up documentation for the rand or the random number generation function. Or
even help help, which shows you, you know help on the help function. So, those are the basic
operations in Octave. And with this you should be able to generate a few matrices, multiply, add
things. And use the basic operations in Octave.

Lecture 6: Logistic Regression:
We'll develop an algorithm called logistic regression, which is one of the most popular and most
widely used learning algorithms today. Here are some examples of classification problems.

Earlier we talked about email spam classification as an example of a classification problem.
Another example would be classifying online transactions. So if you have a website that sells
stuff and if you want to know if a particular transaction is fraudulent or not, whether someone is
using a stolen credit card or has stolen the user's password. There's another classification
problem. And earlier we also talked about the example of classifying tumors as cancerous,
malignant or as benign tumors. In all of these problems the variable that we're trying to predict is
a variable y that we can think of as taking on two values either zero or one, either spam or not
spam, fraudulent or not fraudulent, related malignant or benign. Another name for the class that
we denote with zero is the negative class, and another name for the class that we denote with one
is the positive class. So zero we denote as the benign tumor, and one, positive class we denote a
malignant tumor. The assignment of the two classes, spam not spam and so on. The assignment
of the two classes to positive and negative to zero and one is somewhat arbitrary and it doesn't
really matter but often there is this intuition that a negative class is conveying the absence of
something like the absence of a malignant tumor. Whereas one the positive class is conveying
the presence of something that we may be looking for, but the definition of which is negative and
which is positive is somewhat arbitrary and it doesn't matter that much. For now we're going to
start with classification problems with just two classes zero and one. Later one we'll talk about
multi class problems as well where therefore y may take on four values zero, one, two, and three.
This is called a multiclass classification problem. But for the next few videos, let's start with the
two class or the binary classification problem and we'll worry about the multiclass setting later.
So how do we develop a classification algorithm? Here's an example of a training set for a
classification task for classifying a tumor as malignant or benign. And notice that malignancy
takes on only two values, zero or no, one or yes. So one thing we could do given this training set
is to apply the algorithm that we already know. Linear regression to this data set and just try to fit
the straight line to the data. So if you take this training set and fill a straight line to it, maybe you
get a hypothesis that looks like that, right. So that's my hypothesis. H(x) equals theta transpose x.
If you want to make predictions one thing you could try doing is then threshold the classifier
outputs at 0.5 that is at a vertical axis value 0.5 and if the hypothesis outputs a value that is
greater than equal to 0.5 you can take y = 1. If it's less than 0.5 you can take y=0. Let's see what
happens if we do that. So 0.5 and so that's where the threshold is and that's using linear
regression this way. Everything to the right of this point we will end up predicting as the positive
cross. Because the output values is greater than 0.5 on the vertical axis and everything to the left
of that point we will end up predicting as a negative value. In this particular example, it looks
like linear regression is actually doing something reasonable. Even though this is a classification
toss we're interested in. But now let's try changing the problem a bit. Let me extend out the
horizontal access a little bit and let's say we got one more training example way out there on the
right. Notice that that additional training example, this one out here, it doesn't actually change
anything, right. Looking at the training set it's pretty clear what a good hypothesis is. Is that well
everything to the right of somewhere around here, to the right of this we should predict this
positive. Everything to the left we should probably predict as negative because from this training
set, it looks like all the tumors larger than a certain value around here are malignant, and all the
tumors smaller than that are not malignant, at least for this training set. But once we've added
that extra example over here, if you now run linear regression, you instead get a straight line fit

to the data. That might maybe look like this. And if you know threshold hypothesis at 0.5, you
end up with a threshold that's around here, so that everything to the right of this point you predict
as positive and everything to the left of that point you predict as negative. And this seems a
pretty bad thing for linear regression to have done, right, because you know these are our
positive examples, these are our negative examples. It's pretty clear we really should be
separating the two somewhere around there, but somehow by adding one example way out here
to the right, this example really isn't giving us any new information. I mean, there should be no
surprise to the learning algorithm. That the example way out here turns out to be malignant. But
somehow having that example out there caused linear regression to change its straight-line fit to
the data from this magenta line out here to this blue line over here, and caused it to give us a
worse hypothesis. So, applying linear regression to a classification problem often isn't a great
idea. In the first example, before I added this extra training example, previously linear regression
was just getting lucky and it got us a hypothesis that worked well for that particular example, but
usually applying linear regression to a data set, you might get lucky but often it isn't a good idea.
So I wouldn't use linear regression for classification problems. Here's one other funny thing
about what would happen if we were to use linear regression for a classification problem. For
classification we know that y is either zero or one. But if you are using linear regression where
the hypothesis can output values that are much larger than one or less than zero, even if all of
your training examples have labels y equals zero or one. And it seems kind of strange that even
though we know that the labels should be zero, one it seems kind of strange if the algorithm can
output values much larger than one or much smaller than zero. So what we'll do in the next few
videos is develop an algorithm called logistic regression, which has the property that the output,
the predictions of logistic regression are always between zero and one, and doesn't become
bigger than one or become less than zero. And by the way, logistic regression is, and we will use
it as a classification algorithm, is some, maybe sometimes confusing that the term regression
appears in this name even though logistic regression is actually a classification algorithm. But
that's just a name it was given for historical reasons. So don't be confused by that logistic
regression is actually a classification algorithm that we apply to settings where the label y is
discrete value, when it's either zero or one. So hopefully you now know why, if you have a
classification problem, using linear regression isn't a good idea.

Lecture 7: Regularization (The Problem of Over fitting):

So what is overfitting? Let's keep using our running example of predicting housing prices with
linear regression where we want to predict the price as a function of the size of the house. One
thing we could do is fit a linear function to this data, and if we do that, maybe we get that sort of
straight line fit to the data. But this isn't a very good model. Looking at the data, it seems pretty
clear that as the size of the housing increases, the housing prices plateau, or kind of flattens out
as we move to the right and so this algorithm does not fit the training and we call this problem
underfitting, and another term for this is that this algorithm has high bias. Both of these roughly
mean that it's just not even fitting the training data very well. The term is kind of a historical or
technical one, but the idea is that if a fitting a straight line to the data, then, it's as if the algorithm
has a very strong preconception, or a very strong bias that housing prices are going to vary
linearly with their size and despite the data to the contrary. Despite the evidence of the contrary
is preconceptions still are bias, still closes it to fit a straight line and this ends up being a poor fit
to the data. Now, in the middle, we could fit a quadratic functions enter and, with this data set,
we fit the quadratic function, maybe, we get that kind of curve and, that works pretty well. And,
at the other extreme, would be if we were to fit, say a fourth other polynomial to the data. So,
here we have five parameters, theta zero through theta four, and, with that, we can actually fill a
curve that process through all five of our training examples. You might get a curve that looks
like this. That, on the one hand, seems to do a very good job fitting the training set and, that is
processed through all of my data, at least. But, this is still a very wiggly curve, right? So, it's
going up and down all over the place, and, we don't actually think that's such a good model for
predicting housing prices. So, this problem we call overfitting, and, another term for this is that
this algorithm has high variance.. The term high variance is another historical or technical one.
But, the intuition is that, if we're fitting such a high order polynomial, then, the hypothesis can fit,
you know, it's almost as if it can fit almost any function and this face of possible hypothesis is
just too large, it's too variable. And we don't have enough data to constrain it to give us a good
hypothesis so that's called overfitting. And in the middle, there isn't really a name but I'm just
going to write, you know, just right. Where a second degree polynomial, quadratic function
seems to be just right for fitting this data. To recap a bit the problem of over fitting comes when
if we have too many features, then to learn hypothesis may fit the training side very well. So,
your cost function may actually be very close to zero or may be even zero exactly, but you may
then end up with a curve like this that, you know tries too hard to fit the training set, so that it
even fails to generalize to new examples and fails to predict prices on new examples as well, and
here the term generalized refers to how well a hypothesis applies even to new examples. That is
to data to houses that it has not seen in the training set. On this slide, we looked at over fitting for
the case of linear regression. A similar thing can apply to logistic regression as well. Here is a
logistic regression example with two features X1 and x2. One thing we could do, is fit logistic
regression with just a simple hypothesis like this, where, as usual, G is my sigmoid function. And
if you do that, you end up with a hypothesis, trying to use, maybe, just a straight line to separate
the positive and the negative examples. And this doesn't look like a very good fit to the
hypothesis. So, once again, this is an example of underfitting or of the hypothesis having high
bias. In contrast, if you were to add to your features these quadratic terms, then, you could get a
decision boundary that might look more like this. And, you know, that's a pretty good fit to the
data. Probably, about as good as we could get, on this training set. And, finally, at the other

extreme, if you were to fit a very high-order polynomial, if you were to generate lots of
high-order polynomial terms of speeches, then, logistical regression may contort itself, may try
really hard to find a decision boundary that fits your training data or go to great lengths to contort
itself, to fit every single training example well. And, you know, if the features X1 and X2 offer
predicting, maybe, the cancer to the, you know, cancer is a malignant, benign breast tumors. This
doesn't, this really doesn't look like a very good hypothesis, for making predictions. And so, once
again, this is an instance of overfitting and, of a hypothesis having high variance and not really,
and, being unlikely to generalize well to new examples. Later, in this course, when we talk about
debugging and diagnosing things that can go wrong with learning algorithms, we'll give you
specific tools to recognize when overfitting and, also, when underfitting may be occurring. But,
for now, lets talk about the problem of, if we think overfitting is occurring, what can we do to
address it? In the previous examples, we had one or two dimensional data so, we could just plot
the hypothesis and see what was going on and select the appropriate degree polynomial. So,
earlier for the housing prices example, we could just plot the hypothesis and, you know, maybe
see that it was fitting the sort of very wiggly function that goes all over the place to predict
housing prices. And we could then use figures like these to select an appropriate degree
polynomial. So plotting the hypothesis, could be one way to try to decide what degree
polynomial to use. But that doesn't always work. And, in fact more often we may have learning
problems that where we just have a lot of features. And there is not just a matter of selecting
what degree polynomial. And, in fact, when we have so many features, it also becomes much
harder to plot the data and it becomes much harder to visualize it, to decide what features to keep
or not. So concretely, if we're trying predict housing prices sometimes we can just have a lot of
different features. And all of these features seem, you know, maybe they seem kind of useful.
But, if we have a lot of features, and, very little training data, then, over fitting can become a
problem. In order to address over fitting, there are two main options for things that we can do.
The first option is, to try to reduce the number of features. Concretely, one thing we could do is
manually look through the list of features, and, use that to try to decide which are the more
important features, and, therefore, which are the features we should keep, and, which are the
features we should throw out. Later in this course, where also talk about model selection
algorithms. Which are algorithms for automatically deciding which features to keep and, which
features to throw out. This idea of reducing the number of features can work well, and, can
reduce over fitting. And, when we talk about model selection, we'll go into this in much greater
depth. But, the disadvantage is that, by throwing away some of the features, is also throwing
away some of the information you have about the problem. For example, maybe, all of those
features are actually useful for predicting the price of a house, so, maybe, we don't actually want
to throw some of our information or throw some of our features away. The second option, which
we'll talk about in the next few videos, is regularization. Here, we're going to keep all the
features, but we're going to reduce the magnitude or the values of the parameters theta J. And,
this method works well, we'll see, when we have a lot of features, each of which contributes a
little bit to predicting the value of Y, like we saw in the housing price prediction example. Where
we could have a lot of features, each of which are, you know, somewhat useful, so, maybe, we
don't want to throw them away. So, this subscribes the idea of regularization at a very high level.
And, I realize that, all of these details probably don't make sense to you yet.

Lecture 8: Neural Networks Representation:
Neutral networks is actually a pretty old idea, but had fallen out of favor for a while. But today, it
is the state of the art technique for many different machine learning problems. So why do we
need yet another learning algorithm? We already have linear regression and we have logistic
regression, so why do we need, you know, neural networks? In order to motivate the discussion
of neural networks, let me start by showing you a few examples of machine learning problems
where we need to learn complex non-linear hypotheses. Consider a supervised learning
classification problem where you have a training set like this. If you want to apply logistic
regression to this problem, one thing you could do is apply logistic regression with a lot of
nonlinear features like that. So here, g as usual is the sigmoid function, and we can include lots
of polynomial terms like these. And, if you include enough polynomial terms then, you know,
maybe you can get a hypotheses that separates the positive and negative examples. This
particular method works well when you have only, say, two features - x1 and x2 - because you
can then include all those polynomial terms of x1 and x2. But for many interesting machine
learning problems would have a lot more features than just two. We've been talking for a while
about housing prediction, and suppose you have a housing classification problem rather than a
regression problem, like maybe if you have different features of a house, and you want to predict
what are the odds that your house will be sold within the next six months, so that will be a
classification problem. And as we saw we can come up with quite a lot of features, maybe a
hundred different features of different houses. For a problem like this, if you were to include all
the quadratic terms, all of these, even all of the quadratic that is the second or the polynomial
terms, there would be a lot of them. There would be terms like x1 squared, x1x2, x1x3, you
know, x1x4 up to x1x100 and then you have x2 squared, x2x3 and so on. And if you include just
the second order terms, that is, the terms that are a product of, you know, two of these terms, x1

times x1 and so on, then, for the case of n equals 100, you end up with about five thousand
features. And, asymptotically, the number of quadratic features grows roughly as order n squared,
where n is the number of the original features, like x1 through x100 that we had. And its actually
closer to n squared over two. So including all the quadratic features doesn't seem like it's maybe
a good idea, because that is a lot of features and you might up overfitting the training set, and it
can also be computationally expensive, you know, to be working with that many features. One
thing you could do is include only a subset of these, so if you include only the features x1
squared, x2 squared, x3 squared, up to maybe x100 squared, then the number of features is much
smaller. Here you have only 100 such quadratic features, but this is not enough features and
certainly won't let you fit the data set like that on the upper left. In fact, if you include only these
quadratic features together with the original x1, and so on, up to x100 features, then you can
actually fit very interesting hypotheses. So, you can fit things like, you know, access a line of the
ellipses like these, but you certainly cannot fit a more complex data set like that shown here. So
5000 features seems like a lot, if you were to include the cubic, or third order known of each
others, the x1, x2, x3. You know, x1 squared, x2, x10 and x11, x17 and so on. You can imagine
there are gonna be a lot of these features. In fact, they are going to be order and cube such
features and if any is 100 you can compute that, you end up with on the order of about 170,000
such cubic features and so including these higher auto-polynomial features when your original
feature set end is large this really dramatically blows up your feature space and this doesn't seem
like a good way to come up with additional features with which to build none many classifiers
when n is large. For many machine learning problems, n will be pretty large. Here's an example.
Let's consider the problem of computer vision. And suppose you want to use machine learning to
train a classifier to examine an image and tell us whether or not the image is a car. Many people
wonder why computer vision could be difficult. I mean when you and I look at this picture it is
so obvious what this is. You wonder how is it that a learning algorithm could possibly fail to
know what this picture is. To understand why computer vision is hard let's zoom into a small part
of the image like that area where the little red rectangle is. It turns out that where you and I see a
car, the computer sees that. What it sees is this matrix, or this grid, of pixel intensity values that
tells us the brightness of each pixel in the image. So the computer vision problem is to look at
this matrix of pixel intensity values, and tell us that these numbers represent the door handle of a
car. Concretely, when we use machine learning to build a car detector, what we do is we come
up with a label training set, with, let's say, a few label examples of cars and a few label examples
of things that are not cars, then we give our training set to the learning algorithm trained a
classifier and then, you know, we may test it and show the new image and ask, "What is this new
thing?". And hopefully it will recognize that that is a car. To understand why we need nonlinear
hypotheses, let's take a look at some of the images of cars and maybe non-cars that we might

feed to our learning algorithm. Let's pick a couple of pixel locations in our images, so that's pixel
one location and pixel two location, and let's plot this car, you know, at the location, at a certain
point, depending on the intensities of pixel one and pixel two. And let's do this with a few other
images. So let's take a different example of the car and you know, look at the same two pixel
locations and that image has a different intensity for pixel one and a different intensity for pixel
two. So, it ends up at a different location on the figure. And then let's plot some negative
examples as well. That's a non-car, that's a non-car . And if we do this for more and more
examples using the pluses to denote cars and minuses to denote non-cars, what we'll find is that
the cars and non-cars end up lying in different regions of the space, and what we need therefore
is some sort of non-linear hypotheses to try to separate out the two classes. What is the
dimension of the feature space? Suppose we were to use just 50 by 50 pixel images. Now that
suppose our images were pretty small ones, just 50 pixels on the side. Then we would have 2500
pixels, and so the dimension of our feature size will be N equals 2500 where our feature vector x
is a list of all the pixel testings, you know, the pixel brightness of pixel one, the brightness of
pixel two, and so on down to the pixel brightness of the last pixel where, you know, in a typical
computer representation, each of these may be values between say 0 to 255 if it gives us the
grayscale value. So we have n equals 2500, and that's if we were using grayscale images. If we
were using RGB images with separate red, green and blue values, we would have n equals 7500.
So, if we were to try to learn a nonlinear hypothesis by including all the quadratic features, that is
all the terms of the form, you know, Xi times Xj, while with the 2500 pixels we would end up
with a total of three million features. And that's just too large to be reasonable; the computation
would be very expensive to find and to represent all of these three million features per training
example. So, simple logistic regression together with adding in maybe the quadratic or the cubic
features - that's just not a good way to learn complex nonlinear hypotheses when n is large
because you just end up with too many features.

Lecture 9: Neurons and the Brain
Neural Networks are a pretty old algorithm that was originally motivated by the goal of having
machines that can mimic the brain. Now in this class, of course I'm teaching Neural Networks to
you because they work really well for different machine learning problems and not, certainly not
because they're logically motivated. In this video, I'd like to give you some of the background on
Neural Networks. So that we can get a sense of what we can expect them to do. Both in the sense
of applying them to modern day machinery problems, as well as for those of you that might be
interested in maybe the big AI dream of someday building truly intelligent machines. Also, how
Neural Networks might pertain to that. The origins of Neural Networks was as algorithms that
try to mimic the brain and those a sense that if we want to build learning systems while why not
mimic perhaps the most amazing learning machine we know about, which is perhaps the brain.
Neural Networks came to be very widely used throughout the 1980's and 1990's and for various
reasons as popularity diminished in the late 90's. But more recently, Neural Networks have had a
major recent resurgence. One of the reasons for this resurgence is that Neural Networks are
computationally some what more expensive algorithm and so, it was only, you know, maybe
somewhat more recently that computers became fast enough to really run large scale Neural
Networks and because of that as well as a few other technical reasons which we'll talk about later,
modern Neural Networks today are the state of the art technique for many applications. So, when
you think about mimicking the brain while one of the human brain does tell me same things,
right? The brain can learn to see process images than to hear, learn to process our sense of touch.
We can, you know, learn to do math, learn to do calculus, and the brain does so many different
and amazing things. It seems like if you want to mimic the brain it seems like you have to write
lots of different pieces of software to mimic all of these different fascinating, amazing things that
the brain tell us, but does is this fascinating hypothesis that the way the brain does all of these
different things is not worth like a thousand different programs, but instead, the way the brain
does it is worth just a single learning algorithm. This is just a hypothesis but let me share with
you some of the evidence for this. This part of the brain, that little red part of the brain, is your
auditory cortex and the way you're understanding my voice now is your ear is taking the sound
signal and routing the sound signal to your auditory cortex and that's what's allowing you to
understand my words. Neuroscientists have done the following fascinating experiments where
you cut the wire from the ears to the auditory cortex and you re-wire, in this case an animal's
brain, so that the signal from the eyes to the optic nerve eventually gets routed to the auditory
cortex. If you do this it turns out, the auditory cortex will learn to see. And this is in every single
sense of the word see as we know it. So, if you do this to the animals, the animals can perform
visual discrimination task and as they can look at images and make appropriate decisions based
on the images and they're doing it with that piece of brain tissue. Here's another example. That
red piece of brain tissue is your somatosensory cortex. That's how you process your sense of
touch. If you do a similar re-wiring process then the somatosensory cortex will learn to see.
Because of this and other similar experiments, these are called neuro-rewiring experiments.
There's this sense that if the same piece of physical brain tissue can process sight or sound or
touch then maybe there is one learning algorithm that can process sight or sound or touch. And
instead of needing to implement a thousand different programs or a thousand different
algorithms to do, you know, the thousand wonderful things that the brain does, maybe what we

need to do is figure out some approximation or to whatever the brain's learning algorithm is and
implement that and that the brain learned by itself how to process these different types of data.
To a surprisingly large extent, it seems as if we can plug in almost any sensor to almost any part
of the brain and so, within the reason, the brain will learn to deal with it. Here are a few more
examples. On the upper left is an example of learning to see with your tongue. The way it works
is--this is actually a system called BrainPort undergoing FDA trials now to help blind people
see--but the way it works is, you strap a grayscale camera to your forehead, facing forward, that
takes the low resolution grayscale image of what's in front of you and you then run a wire to an
array of electrodes that you place on your tongue so that each pixel gets mapped to a location on
your tongue where maybe a high voltage corresponds to a dark pixel and a low voltage
corresponds to a bright pixel and, even as it does today, with this sort of system you and I will be
able to learn to see, you know, in tens of minutes with our tongues. Here's a second example of
human echo location or human sonar. So there are two ways you can do this. You can either snap
your fingers, or click your tongue. I can't do that very well. But there are blind people today that
are actually being trained in schools to do this and learn to interpret the pattern of sounds
bouncing off your environment - that's sonar. So, if after you search on YouTube, there are
actually videos of this amazing kid who tragically because of cancer had his eyeballs removed,
so this is a kid with no eyeballs. But by snapping his fingers, he can walk around and never hit
anything. He can ride a skateboard. He can shoot a basketball into a hoop and this is a kid with
no eyeballs. Third example is the Haptic Belt where if you have a strap around your waist, ring
up buzzers and always have the northmost one buzzing. You can give a human a direction sense
similar to maybe how birds can, you know, sense where north is. And, some of the bizarre
example, but if you plug a third eye into a frog, the frog will learn to use that eye as well. So, it's
pretty amazing to what extent is as if you can plug in almost any sensor to the brain and the
brain's learning algorithm will just figure out how to learn from that data and deal with that data.
And there's a sense that if we can figure out what the brain's learning algorithm is, and, you
know, implement it or implement some approximation to that algorithm on a computer, maybe
that would be our best shot at, you know, making real progress towards the AI, the artificial
intelligence dream of someday building truly intelligent machines. Now, of course, I'm not
teaching Neural Networks, you know, just because they might give us a window into this far-off
AI dream, even though I'm personally, that's one of the things that I personally work on in my
research life. But the main reason I'm teaching Neural Networks in this class is because it's
actually a very effective state of the art technique for modern day machine learning applications.

1.

	Lecture 3: Linear Algebra Review:
	A matrix is a rectangular array of numbers written
	Lecture 4: Linear Regression with Multiple Variabl
	Lecture 5: Octave/Matlab Tutorial:
	In Octave. And that's my Octave prompt. Let me fi
	Lecture 6: Logistic Regression:
	Lecture 7: Regularization (The Problem of Over fit

	Lecture 8: Neural Networks Representation:
	Neutral networks is actually a pretty old idea, bu
	Lecture 9: Neurons and the Brain

