

 FINAL ASSIGNMENT

 NAME MUHAMMAD SOHAIL

ID # 14071

DAGREE BS (SE)

COURSE NAME SOFTWARE VERIFICATION &VALIDATION

INSTUCTOR NAME ZAIN SHAUKAT

SEMESTER 6TH

DATE 25/06/2020

Q1. MCQS (10)

1. When should company stop the testing of a particular

software?

a. After system testing done

b. It depends on the risks for the system being tested

c. After smoke testing done

d. None of the above

2. White-Box Testing is also known as ________ .

a. Structural testing

b. Code-Based Testing

c. Clear box testing

d. All of the above

3. ___________ refers to a different set of tasks ensures that

the software that has been built is traceable to Customer

Requirements.

a. Verification

b. Requirement engineering

c. Validation

d. None of the above

4. ________ verifies that all elements mesh properly and

overall system functions/performance is achieved.

a. Integration testing

b. Validation testing

c. Unit testing

d. System Testing

5. What do you verify in White Box Testing?

- Published on 03 Aug 15

a. Testing of each statement, object and function on an

individual basis.

b. Expected output.

c. The flow of specific inputs through the code.

d. All of the above.

6. __________ refers to the set of tasks that ensures the

software correctly implements a specific function.

- Published on 03 Aug 15

a. Verification

b. Validation

c. Modularity

d. None of the above.

7. Who performs the Acceptance Testing?

- Published on 03 Aug 15

a. Software Developer

b. End users

c. Testing team

d. Systems engineers

8. Which of the following is not a part of Performance Testing?

- Published on 30 Jul 15

a. Measuring Transaction Rate.

b. Measuring Response Time.

c. Measuring the LOC.

d. None of the above.

9. Which of the following can be found using Static Testing

Techniques?

- Published on 29 Jul 15

a. Defect

b. Failure

c. Both A & B

10. Testing of individual components by the developers are comes

under which type of testing?

- Published on 29 Jul 15

a. Integration testing

b. Validation testing

c. Unit testing

d. None of the above.

What is Black Box Testing?

BLACK BOX TESTING is defined as a testing technique in which

functionality of the Application Under Test (AUT) is tested

without looking at the internal code structure, implementation

details and knowledge of internal paths of the software. This

type of testing is based entirely on software requirements and

specifications. In BlackBox Testing we just focus on inputs and

output of the software system without bothering about internal

knowledge of the software program.

The above Black-Box can be any software system you want to test.

For Example, an operating system like Windows, a website like

Google, a database like Oracle or even your own custom

application. Under Black Box Testing, you can test these

applications by just focusing on the inputs and outputs without

knowing their internal code implementation.

How to do BlackBox Testing

Here are the generic steps followed to carry out any type of

Black Box Testing.

• Initially, the requirements and specifications of the

system are examined.

• Tester chooses valid inputs (positive test scenario) to

check whether SUT processes them correctly. Also, some

invalid inputs (negative test scenario) are chosen to

verify that the SUT is able to detect them.

• Tester determines expected outputs for all those inputs.

• Software tester constructs test cases with the selected

inputs.

• The test cases are executed.

• Software tester compares the actual outputs with the

expected outputs.

• Defects if any are fixed and re-tested.

Types of Black Box Testing

There are many types of Black Box Testing but the following are

the prominent ones -

• Functional testing - This black box testing type is related

to the functional requirements of a system; it is done by

software testers.

• Non-functional testing - This type of black box testing is

not related to testing of specific functionality, but non-

functional requirements such as performance, scalability,

usability.

• Regression testing - Regression Testing is done after code

fixes, upgrades or any other system maintenance to check

the new code has not affected the existing code.

Tools used for Black Box Testing:

Tools used for Black box testing largely depends on the type of

black box testing you are doing.

• For Functional/ Regression Tests you can use -

 QTP, Selenium

• For Non-Functional Tests, you can use - LoadRunner, Jmeter

Black Box Testing Techniques

Following are the prominent Test Strategy amongst the many used

in Black box Testing

• Equivalence Class Testing: It is used to minimize the

number of possible test cases to an optimum level while

maintains reasonable test coverage.

• Boundary Value Testing: Boundary value testing is focused

on the values at boundaries. This technique determines

whether a certain range of values are acceptable by the

system or not. It is very useful in reducing the number of

test cases. It is most suitable for the systems where an

input is within certain ranges.

• Decision Table Testing: A decision table puts causes and

their effects in a matrix. There is a unique combination in

each column.

https://www.guru99.com/regression-testing.html
https://www.guru99.com/quick-test-professional-qtp-tutorial.html
https://www.guru99.com/selenium-tutorial.html
https://www.guru99.com/loadrunner-v12-tutorials.html
https://www.guru99.com/jmeter-tutorials.html
https://www.guru99.com/how-to-create-test-strategy-document.html

WHITE BOX TESTING (also known as Clear Box Testing, Open Box

Testing, Glass Box Testing, Transparent Box Testing, Code-Based

Testing or Structural Testing) is a software testing method in

which the internal structure/design/implementation of the item

being tested is known to the tester. The tester chooses inputs

to exercise paths through the code and determines the

appropriate outputs. Programming know-how and the implementation

knowledge is essential. White box testing is testing beyond the

user interface and into the nitty-gritty of a system.

This method is named so because the software program, in the

eyes of the tester, is like a white/transparent box; inside

which one clearly sees.

Definition by ISTQB

o white-box testing: Testing based on an analysis of the internal

structure of the component or system.

o white-box test design technique: Procedure to derive and/or

select test cases based on an analysis of the internal structure

of a component or system.

Example

A tester, usually a developer as well, studies the

implementation code of a certain field on a webpage, determines

all legal (valid and invalid) AND illegal inputs and verifies

the outputs against the expected outcomes, which is also

determined by studying the implementation code.

White Box Testing is like the work of a mechanic who examines

the engine to see why the car is not moving.

Levels Applicable To

White Box Testing method is applicable to the following levels

of software testing:

o Unit Testing: For testing paths within a unit.

o Integration Testing: For testing paths between units.

o System Testing: For testing paths between subsystems.

However, it is mainly applied to Unit Testing.

Advantages

o Testing can be commenced at an earlier stage. One need not wait

for the GUI to be available.

http://softwaretestingfundamentals.com/software-testing-methods/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/system-testing/

o Testing is more thorough, with the possibility of covering most

paths.

Disadvantages

o Since tests can be very complex, highly skilled resources are

required, with a thorough knowledge of programming and

implementation.

o Test script maintenance can be a burden if the implementation

changes too frequently.

o Since this method of testing is closely tied to the application

being tested, tools to cater to every kind of

implementation/platform may not be readily available.

White Box Testing is contrasted with Black Box Testing. Read

the Differences between Black Box Testing and White Box Testing.

Q4. What is Z specification and why its is used for, also give

some example this code written in Z specification?

The Z notation is a formal specification language used for

describing and modelling computing systems. It is targeted at

the clear specification of computer programs and computer-based

systems in general

Usage and notation

Z is based on the standard mathematical notation used

in axiomatic set theory, lambda calculus, and first-order

predicate logic. All expressions in Z notation are typed,

thereby avoiding some of the paradoxes of naive set theory. Z

contains a standardized catalogue (called the mathematical

toolkit) of commonly used mathematical functions and predicates,

defined using Z itself.

Although Z notation (just like the APL language, long before it)

uses many non-ASCII symbols, the specification includes

suggestions for rendering the Z notation symbols in ASCII and

in LaTeX. There are also Unicode

http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/differences-between-black-box-testing-and-white-box-testing/
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Axiomatic_set_theory
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/First-order_predicate_logic
https://en.wikipedia.org/wiki/First-order_predicate_logic
https://en.wikipedia.org/wiki/Type_(model_theory)
https://en.wikipedia.org/wiki/Naive_set_theory#Paradoxes
https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Unicode

QUESTION 03

CYCLOMATIC COMPLEXITY is a software metric used to measure
the complexity of a program. It is a quantitative measure of

independent paths in the source code of the program. Independent

path is defined as a path that has at least one edge which has

not been traversed before in any other paths. Cyclomatic

complexity can be calculated with respect to functions, modules,

methods or classes within a program.

This metric was developed by Thomas J. McCabe in 1976 and it is

based on a control flow representation of the program. Control

flow depicts a program as a graph which consists of Nodes and

Edges.

In the graph, Nodes represent processing tasks while edges

represent control flow between the nodes.

Flow graph notation for a program:

Flow Graph notation for a program defines several nodes

connected through the edges. Below are Flow diagrams for

statements like if-else, While, until and normal sequence of

flow.

Consider three software items: Program-X, Control Flow Diagram

of Program-Y and Control Flow Diagram of Program-Z as shown

below

Cyclomatic complexity

Cyclomatic complexity is equal to 4 (4)

Formula

1 Cyclomatic complexity = no of predicates +1

For given in the program predicates are if while total 2 if and 1 while condition

so the answer is 4

The values of McCabe’s Cyclomatic complexity of Program-X, Program-Y and Program-Z
respectively are
(A) 4, 4, 7
(B) 3, 4, 7
(C) 4, 4, 8
(D) 4, 3, 8

Answer: (A)

Explanation:
The cyclomatic complexity of a structured program[a] is defined

with reference to the control flow graph of the program, a directed

graph containing the basic blocks of the program, with an edge

between two basic blocks if control may pass from the first to the

second. The complexity M is then defined as.

 M = E − N + 2P,

where

 E = the number of edges of the graph.

 N = the number of nodes of the graph.

 P = the number of connected components

