Department of Electrical Engineering Assignment Date: 20/04/2020 Course Details Urse Title: ________ Module: ______02

Course Title:	Thermodynamics	Module:	02
Instructor:	Sir Mujtaba Ahsan	Total Marks:	30

Student Details

Name:

Abdullah

Student ID: 161

16194

Q1. (a) Express the temperature of 139 °C on degree Fahrenheit, Ra		Express the temperature of 139 °C on degree	e Fahrenheit, Rankine and Kelvin scales.	Marks 06
				CLO 1
	(b)	Derive the equation highlighting the work done by a gas or vapour in expanding for a constant temperature process.		Marks 05
				CLO 1
Q2.		Analyze the given figure and match column 1 with the correct option of column 2.		Marks 08
		CLC		CLO 1
		Column 1	Column 2	
		Process I	Adiabatic	
		Process II	Isobaric	
		Process III	Isochoric	
		Process IV	Isothermal	
Q3.	(a)	Hydrogen is compressed under a constant pressure of 5760 lb/ft² until its volume isNreduced from 28 to 12 ft³. Calculate the work done in compressing the gas.0		Marks 07
				CLO 1
	(b)	Differentiate between enthalpy and entropy using examples from daily life.		Marks 04
				CLO 1

Q no 1: (part a)

Ans: <u>Given data:</u>

C = 139 °c

1. Fahrenheit scale:

2. <u>Kelvin scale:</u>

We know th	at
K = C + 273	
K = 139 + 273	3
K = 412 ^o k	

3. Rankin scale :

Q no 1. (part b)

Ans 1:

Work done by a gas or vapours in expending:-

The amount of work done in a gas or vapours in expending defined on the method by which expansion is perform.

As,

As

$$W = \int p\Delta v$$

Constant temperature
$$W = \int_{v_1}^{v_2} pdv$$
$$p_1 v_1 = p_2 v_2 = pv = c$$
$$p = \frac{c}{v}$$
$$W = \int_{v_1}^{v_2} pdv$$
$$= \int_{v_1}^{v_2} \frac{c}{v} dv$$
$$= c \ln v \int_{v_1}^{v_2}$$

 $= c \operatorname{In} \left(\frac{v_2}{v_1} \right)$ Work = $p_1 v_1 \operatorname{In} \left(\frac{v_2}{v_1} \right)$

Q NO 2:

ANS :

Column 1	Column 2
Process I	Adiabatic
Process II	Isobaric
Process III	Isochoric
Process IV	Isothermal

Q NO 3. (part a)

Ans :

Given data:

Required :

Work done = ?

Solution:

We know that

Work done = $-P\Delta V$

Work done = $-P(v_2-v_1)$

Work done = -5760(12-28)

Result:

Work done = 92160 j

Question no .3

Ans : Difference Between Enthalpy and Entropy:

Enthalpy:	Entropy:
1. Def: enthalpy is equal to the total	1. Def: entropy is the measure of a
internal energy of the system plus the	system's thermal energy per unit
product of pressure and volume.	temperature that is unavailable for
	doing work
2. It is represented as $\Delta H = \Delta E + P \Delta V$.	2. It is represented as $\Delta S = \Delta Q/T$
3. Enthalpy is a kind of energy.	3. Entropy is a property.
4. It is the sum of internal energy and	4. It is the measurement of
flow energy.	randomness of molecules.

5. It unit is Jmol ⁻¹ .	5. It unit is JK ⁻¹ .
6. It related is applicable in standard	6. It does not have any limits or
conditions.	conditions.
7. example:	7. example:
Refrigerator compressors and	A campfire is an example
chemical hand warmers are both real-	of entropy. The solid wood burns and
life examples of enthalpy.	becomes ash, smoke and gases, all of
Both the vaporization of refrigerants	which spread energy outwards more
in the compressor and the reaction	easily than the solid fuel.
to the iron oxidation in a hand warmer	
generate a change in heat content	
under constant pressure.	