Department of Electrical Engineering
 Assignment
 Date: 20/04/2020

Course Details

Course Title: Thermodynamics \qquad

Module:

02
Instructor: Sir Mujtaba Ahsan \qquad Total Marks: 30

Student Details

Name:
Abdullah \qquad Student ID: 16194

Q1.	(a)	Express the temperature of $139^{\circ} \mathrm{C}$ on degree Fahrenheit, Rankine and Kelvin scales.	Marks 06
			CLO 1
	(b)	Derive the equation highlighting the work done by a gas or vapour in expanding for a constant temperature process.	Marks 05
			CLO 1
Q2.		Analyze the given figure and match column 1 with the correct option of column 2.	Marks 08
			CLO 1
		Column 1 Column 2	
		Process I Adiabatic	
		Process II	
		Process III Isochoric	
		Process IV Isothermal	
Q3.	(a)	Hydrogen is compressed under a constant pressure of $5760 \mathrm{lb} / \mathrm{ft}^{2}$ until its volume is reduced from 28 to $12 \mathrm{ft}^{3}$. Calculate the work done in compressing the gas.	Marks 07
			CLO 1
	(b)	Differentiate between enthalpy and entropy using examples from daily life.	$\begin{aligned} & \text { Marks } \\ & 04 \\ & \hline \end{aligned}$
			CLO 1

Q no 1: (part a)
Ans: Given data:

$$
\mathrm{C}=139{ }^{\circ} \mathrm{C}
$$

1. Fahrenheit scale:

$$
\begin{aligned}
& \text { We know that } \\
& \mathrm{F}=\left(1.8^{*} \mathrm{C}\right)+32 \\
& \mathrm{~F}=\left(1.8^{*} 139\right)+32 \\
& \mathrm{~F}=250.2+32 \\
& \mathrm{~F}=282.2^{\circ} \mathrm{f}
\end{aligned}
$$

2. Kelvin scale:

$$
\begin{aligned}
& \text { We know that } \\
& \mathrm{K}=\mathrm{C}+273 \\
& \mathrm{~K}=139+273 \\
& \mathrm{~K}=412^{\circ} \mathrm{k}
\end{aligned}
$$

3. Rankin scale :

We know that

$$
\begin{gathered}
\mathrm{R}=(1.8) \mathrm{k} \\
\mathrm{R}=(1.8)(412) \\
\mathrm{R}=741.6^{\circ} \mathrm{R}
\end{gathered}
$$

Q no 1. (part b)

Ans 1:

Work done by a gas or vapours in expending:-
The amount of work done in a gas or vapours in expending defined on the method by which expansion is perform.

As,

$$
W=\int p \Delta v
$$

Constant temperature

$$
W=\int_{v_{1}}^{v_{2}} p d v
$$

As

$$
\begin{gathered}
p_{1} v_{1}=p_{2} v_{2}=p v=c \\
p=\frac{c}{v}
\end{gathered}
$$

$$
W=\int_{v_{1}}^{v_{2}} p d v
$$

$$
=\int_{v_{1}}^{v_{2}} \frac{c}{v} d v
$$

$$
=c \operatorname{In} v \int_{v_{1}}^{v_{2}}
$$

$$
=c \operatorname{In}\left(\frac{v_{2}}{v_{1}}\right)
$$

Work $=p_{1} v_{1} \operatorname{In}\left(\frac{v_{2}}{v_{1}}\right)$

Q NO 2:
ANS :

| Column 1 | Column 2 |
| :---: | :---: | :---: |
| Process I | Adiabatic |
| Process II | Isobaric |
| Process III | Isochoric |
| Process IV | |

Q NO 3. (part a)

Ans :

Given data:

$$
\begin{aligned}
& \mathrm{P}=5760 \mathrm{ib} / \mathrm{ft}^{3} \\
& \mathrm{~V}_{1}=28 \mathrm{ft}^{3} \\
& \mathrm{~V}_{2}=12 \mathrm{ft}^{3}
\end{aligned}
$$

Required:
Work done = ?

Solution:

$$
\begin{aligned}
& \text { We know that } \\
& \text { Work done }=-P \Delta V \\
& \text { Work done }=-P\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& \text { Work done }=-5760(12-28) \\
& \text { Work done }=-5760(-16)
\end{aligned}
$$

Result:

$$
\text { Work done }=92160 \text { j }
$$

Question no . 3

Ans: Difference Between Enthalpy and Entropy:

Enthalpy:	Entropy:				
1. Def: enthalpy is equal to the total internal energy of the system plus the product of pressure and volume.	1. Def: entropy is the measure of a system's thermal energy per unit temperature that is unavailable for doing work				
2. It is represented as $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$.	2. It is represented as $\Delta \mathrm{S}=\Delta \mathrm{Q} / \mathrm{T}$	$	$	3. Enthalpy is a kind of energy.	3. Entropy is a property.
:---	:---				
4. It is the sum of internal energy and flow energy.	4. It is the measurement of randomness of molecules.				

5. It unit is Jmol^{-1}.	5. It unit is JK^{-1}.		
6. It related is applicable in standard conditions.	6. It does not have any limits or conditions.		
7. example: Refrigerator compressors and chemical hand warmers are both real- life examples of enthalpy.	7. example: of entropy. The solid wood burns and becomes ash, smoke and gases, all of in the compressor and the reaction to the iron oxidation in a hand warmer generate a change in heat content under constant pressure.		which spread energy outwards more
:---			
easily than the solid fuel.			

