
 Name suliman khan ID 14282 Subject data sciences
 Q1. a. Why Functions are used discuss in detail? b. How arguments are used in function , write a simple program in Python
a. Why Functions are used discuss in detail
Ans :
A function is a block of code which only runs when it is called.
You can pass data, known as parameters, into a function.
A function can return data as a result. This way the functions used in the programming.

Functions are "self contained" modules of code that accomplish a specific task. Functions
usually "take in" data, process it, and "return" a result. Once a function is written, it can be used
over and over and over again. Functions can be "called" from the inside of other functions.
A function is a rule which relates the values of one variable quantity to the values of another
variable quantity, and does so in such a way that the value of the second variable quantity is
uniquely determined by (i.e. is a function of) the value of the first variable quantity.
Why do we Write Functions?

1. They allow us to conceive of our program as a bunch of sub-steps. (Each sub-step can be its own function. When any program seems too hard, just break the overall program into sub-steps!) 2. They allow us to reuse code instead of rewriting it.

3. Functions allow us to keep our variable namespace clean (local variables only "live" as long as the function does). In other words, function_1 can use a variable called i, and
function_2 can also use a variable called i and there is no confusion. Each variable i only exists when the computer is executing the given function.

4. Functions allow us to test small parts of our program in isolation from the rest. This is especially true in interpreted langaues, such as Matlab, but can be useful in C, Java, ActionScript, etc.
Steps to Writing a Function

1. Understand the purpose of the function. 2. Define the data that comes into the function from the caller (in the form of parameters)! 3. Define what data variables are needed inside the function to accomplish its goal. 4. Decide on the set of steps that the program will use to accomplish this goal. (The Algorithm)
Function Workspace
Every function has its own Workspace. This means that every variable inside the function is
only usable during the execution of the function (and then the variables go away).
Having a separate "workspace" for each function is critical to proper software engineering. If every function shared every variable in an entire program, it would be easy to inadvertently change the values of variables that you shouldn't. Further, it would be hard to remember what
"names" have been used elsewhere, and coming up with new names to represent similar ideas would be challenging.
Additionally, the function can only "see" the information that is "passed" to it via parameters.
Thus the only way information can get "in" to the function is by using parameters.

b. How arguments are used in function , write a simple program in Python
Defining a Function Here are simple rules to define a function in Python. Function blocks begin with the keyword def followed by the function name and parentheses (()). Any
input parameters or arguments should be placed within these parentheses. You can also define parameters inside these parentheses.
A simple program in python
def f(x, y): z = 2 * (x + y) return z print("Program starts!") a = 3 res1 = f(a, 2+a) print("Result of function call:", res1) a = 4

b = 7 res2 = f(a, b) print("Result of function call:", res2) Program starts! Result of function call: 16 Result of function call: 22

2.
def my_function(*kids):
 print("The youngest child is " + kids[2]) my_function("Emil", "Tobias", "Linus")

You can also send arguments with the key = value syntax.
This way the order of the arguments does not matter.

Example
def my_function(child3, child2, child1):
 print("The youngest child is " + child3)
my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus") Q2. a. Why .upper(),.lower(),capitalize() and .swapcase() function are used Ans :
The upper() method returns the uppercased string from the given string. It
converts all lowecase characters to uppercase. If no lowercase characters
exist, it returns the original string.

swapcase()
The string swapcase() method converts all uppercase characters to lowercase and
vice versa of the given string, and returns it. Here string_name is the string whose
cases are to be swapped. Parameter: The swapcase() method does not takes any
parameter.

In this article, we will go for capitalizing the
characters i.e. conversion from lowercase to uppercase without
using any function. This article is based on the concept that how
inbuilt function perform this task for us?
Example:
 Input: Hello world! Output: HELLO WORLD!
Python program to capitalize the character # without using a function st = input('Type a string: ') out = '' for n in st: if n not in 'abcdefghijklmnopqrstuvwqxyz': out = out + n else: k = ord(n) l = k - 32 out = out + chr(l) print('------->', out)

b. Write a program in which the discussed functions are used
Ans:

Function definition is here def changeme(mylist): "This changes a passed list into this function" mylist = [1,2,3,4]; # This would assig new reference in mylist print "Values inside the function: ", mylist return

 # Now you can call changeme function mylist = [10,20,30]; changeme(mylist); print "Values outside the function: ", mylist
 the out put Values inside the function: [1, 2, 3, 4] Values outside the function: [10, 20, 30]
Q3. a. What are the rules for defining the function? Ans :
A function defined as a rule contains common calculations that can be broken out into logical pieces. Functions improve readability as the inputs and outputs are clearly defined. In addition, the majority
of math variables used in a function do not need to be stored or used outside of the function. The
math variables in a function are not stored in Math results, which improves system performance. Instead, the function is cached temporarily.
puts and outputs must be clearly defined and math variables mapped to the input and output of
the function must be defined prior to the function call or a stack trace will occur.
Every function has a signature. This signature is the name, parameters and the data types
being passed in and out
Functions Defined as Rules

 All math functionality available in transactions and business rule configuration is
available within functions except LOG. Use LOG for the function’s return value. Do not use LOG for math variables in the function itself.

 Functions may be global or they may be overridden. Overrides should be used as an
exception to the more general higher level overrides.

 The same functionality available in global functions is available in the override. Inputs and outputs must be clearly defined and math variables mapped to the
input and output of the function must be defined prior to the function call or a stack trace will occur.

 Every function has a signature. This signature is the name, parameters and the
data types being passed in and out. There will be one signature that transcends all the overrides. All overrides are required to match a global signature.

 Functions are often chosen over CopyBooks for specific calculations since they offer
increased readability.

 Functions can be defined at different levels. Container components using them will establish a context that finds the best matching level to execute for each individual
function.
 If a function is used multiple times in a transaction/business rule it will be resolved and compiled once, no matter how many times it is used in that
transaction/rule. Steps to Call a Function Defined as a Rule

1. Right-click on the XML file to call the function in. 2. Select Check out.
3. Open the Math pane. 4. From the Palette window, scroll down to the folder labeled rule and drag and

drop FunCall onto the Configuration Area. 5. Name the math variable.
6. Click the Data Type field to select a data type from the drop down box. 7. Select whether to LOG or Round the function’s output result.
8. Click the Functions field to select the function to call from the Functions drop-down box. 9. In the Input section, click the Value drop-down box to select each parameter’s value.
10. In the Output section, click the Value drop down box to select each parameter's value. 11. Check-in the XML file to save the changes.

b. Write a suitable program of our defined function in Python

Ans:

In Python, a function is a group of related statements that performs a specific
task.
Functions help break our program into smaller and modular chunks. As our
program grows larger and larger, functions make it more organized and
manageable.
Furthermore, it avoids repetition and makes the code reusable.

Example of a function
def greet(name):

 """
 This function greets to
 the person passed in as
 a parameter
 """
 print("Hello, " + name + ". Good morning!")

 Q4. a. What are the rules for defining the function and Parameter
passing to the
 function?

Ans :

Arguments are passed by value; that is, when a function is called, the parameter receives a copy of the argument's value, not its address. ... However, because arguments can be addresses or pointers, a function can use addresses to modify the values of variables defined
in the calling function.
C functions exchange information by means of parameters and arguments. The term parameter refers to
any declaration within the parentheses following the function name in a function declaration or definition;
the term argument refers to any expression within the parentheses of a function call.
The following rules apply to parameters and arguments of C functions:

 Except for functions with variable-length argument lists, the number of arguments in a function
call must be the same as the number of parameters in the function definition. This number can be
zero.

 The maximum number of arguments (and corresponding parameters) is 253 for a single function.
 Arguments are separated by commas. However, the comma is not an operator in this context, and

the arguments can be evaluated by the compiler in any order. There is, however, a sequence point
before the actual call.

 Arguments are passed by value; that is, when a function is called, the parameter receives a copy
of the argument's value, not its address. This rule applies to all scalar values, structures, and
unions passed as arguments.

 Modifying a parameter does not modify the corresponding argument passed by the function call.
However, because arguments can be addresses or pointers, a function can use addresses to modify
the values of variables defined in the calling function.

 In the old style, parameters that are not explicitly declared are assigned a default type of int .
 The scope of function parameters is the function itself. Therefore, parameters of the same name in

different functions are unrelated.

 b. Write a suitable program of our defined function by parameter
passing in Python? Ans :

Function definition is here def printme(str): "This prints a passed string into this function" print str return; # Now you can call printme function printme("I'm first call to user defined function!") printme("Again second call to the same function")

When the above code is executed, it produces the following result −
I'm first call to user defined function! Again second call to the same function

 Q5. a. What are return values to a Function discuss in detail? Ans :
The return statement is used to exit a function and go back to the place from where it was
called.
Syntax of return
return [expression_list]

This statement can contain an expression that gets evaluated and the value is returned. If there
is no expression in the statement or the return statement itself is not present inside a function,
then the function will return the None object.
For example:
>>> print(greet("May"))
Hello, May. Good morning!
None

When you create a new function that returns a string value, the Script Manager places the
following function beginning line into your script file:
String Function MyFunction ()
The "string" key word that precedes the "function" key word tells you that the MyFunction
function returns a string value to the calling script or user-defined function.
The Return Statement
You use the return statement to send a value back to the calling script or user-defined function.
This key word tells JAWS to return the specified value to the calling script or function. You can return the value as a literal value or within a variable. The syntax of a return statement that
sends a string value stored in a variable called sText back to the calling script or user-defined
function follows:
Return sText
A return statement that returns a string of text, "This is a string", as a literal follows:
Return "this is a string"
When a function returns a value to the calling script or user-defined function, you must store that value in either a local or global variable. You can then use that variable to make decisions on
what the calling script or user-defined function should do next. An example of storing a string
value returned by a function called MyFunction in a local variable follows:

b. Write a suitable program of a Function with returning value?
Ans :
def absolute_value(num):
 """This function returns the absolute
 value of the entered number"""

 if num >= 0:
 return num
 else:
 return -num

print(absolute_value(2))

print(absolute_value(-4)

Output
2
4

