Industrial Electronics
 Assignment

Question No 1. Multiple choice Questions

1. Does the severity of an electric shock increase or decrease with each of the following changes?
a. A decrease in the source voltage (Increase)
b. An increase in body current flow

(Increase)

c. An increase in body resistance

(Decrease)

d. A decrease in the length of time of exposure (Decrease)
2. State the piece of electrical safety equipment that should be used to perform each of the following tasks:
a. A switching operation where there is a risk of injury to the eyes or face from an electric arc. (Safety

Glasses)

b. Using a multimeter to verify the line voltage on a 3-phase 480 volt system
(Safety gloves, safety shoes, safety hat)
c. Opening a manually operated high-voltage disconnect switch. (Safety
gloves, safety shoes, safety hat)
3. In which industrial revolution the use of IT and Electronic systems further automated the production of industrial sector
a. First.
b. Second.
\checkmark c,Third.
c. Fourth.
4. Industrial safety is primarily a management activity which is concerned with \qquad , Controlling, Eliminating hazards from the industries.
\checkmark a, Reducing
b, Increasing
c, suppressing

The \qquad is defined as the device which convert the one form of energy into another form of the energy.
a. Sensor
\checkmark Transducer
b. Resistor
c. Capacitor

IQRA National University, Peshawar Department of Electrical Engineering

Industrial Electronics

Assignment

Question No 2

A. Draw digital logic circuit and ladder diagram that is equivalent to the following Boolean function that will initiate a motor "M" to start? (10) CLO-2 $\mathrm{M}=\mathrm{B}^{\prime} \mathrm{C} \mathrm{D}^{\prime}+\mathrm{B}^{\prime} \mathrm{CE}+\mathrm{B}^{\prime} \mathrm{C} \mathrm{F}^{\prime}$

Question No 3

A. Describe and draw ladder diagram for the below given process having a container infused with liquids A and B in order when START is pressed. When it reaches the set level, mix the two liquids evenly then open the valve to let out the mixture? CLO-2

.Good Luck

Q2:-

$$
M=B \cdot C \cdot D+B \cdot C \cdot E+B^{\prime} C \cdot F
$$

Sol:-

Q 3 A:-
Answer :-
(*) Number of PLC Input Required:-
X1 - start Switch
$X 1$ - Low level float Sensor. $X 1=O N$ When the liquid level reaches $X 1$.
X_{2} - High level float Sensor. $X_{2}=O N$ when the liquid level reaches $\times 2$.
$X 10$ - Emergency stop Button. $X 10=O N$ when the Button is pressed.
(\#) Number of PLC output Required:-

$$
\begin{aligned}
& y_{0}=\text { Liquid } A \text { inlet } \\
& y_{1}=\text { Liquid } B \text { Inlet } \\
& y_{2}=\text { Mixture outlet } \\
& y_{3}=\text { Agitator / Stirrer }
\end{aligned}
$$

(*) Number of PLC Timer Required:-
\rightarrow To -60 second 100 ms Time Base (see K60 Preset Value for Timer)
\rightarrow Ti- 120 Second Timer, 100 ms Time Base (see $k 1200$ Present val, for Timer.
(*) PLC Ladder Diagram:-

* PLC Ladder Diagram Description:-
$\rightarrow X_{0}=O N$ when start is Pressed. Yo will be $O N$ and latched and the value will be opened for infusing liquid

A until the level reaches the low-level float Sensor
$\rightarrow X_{1}=$ on when. the level reaches the low level Float sensor $1 / 1$ will be $O N$ and latched, and the Valve will be opened for infusing livuid B until the level reaches the high level Float Sensor.
$\rightarrow X_{2}=$ oNt when the level reaches the high level Float Senor. Y_{3} will be ON and Activities the Agitator. Also Timer To will start to Count For 60 see . After 60 sec To will be oN. and the Agitator motor Y_{3} will stop working.
\rightarrow When $y_{2}=0 \mathrm{~N}$ timer T_{1} will start to count for 120 su . After $120 \mathrm{see} T_{1}$ will be or and y_{2} will be OFF. The draining process will be stopped.
\rightarrow When an error occures, Dress Emergency stop Button $\times 10$. The HC contact $\times 10$ will be ON to disable all the outputs. The system will then stop running.

