Submitted To: Mam Aasma Khan
Submitted By: Syed Muhammad Ali
ID \& Semester: 14258 - BS(SE) $5^{\text {th }}$
Course: Natural Language Processing

Question No. 1:

a. Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.

ANSWER

> POS Tagging:

It is a process of converting a sentence to forms - list of words, list of tuples (where each tuple is having a form (word, tag)). The tag in case of is a part-ofspeech tag, and signifies whether the word is a noun, adjective, verb, and so on.
Default tagging: is a basic step for the part-of-speech tagging. It is performed using the
Default Tagger class. The Default Tagger class takes 'tag' as a single argument. NN is the tag for a singular noun. Default Tagger is most useful when it gets to work with most common part-of-speech tag. That's why a noun tag is recommended.

$>$ POS tag ambiguity:

Common parts of speech in English are noun, verb, adjective, adverb, etc. The POS tagging problem is to determine the POS tag for a particular instance of a word. The main problem with POS tagging is ambiguity.

- For Example

 POS Tag AmbiguityIn English : I bank ${ }_{1}$ on the bank ${ }_{2}$ on the river bank ${ }_{3}$ for my transactions.

Bank ${ }_{1}$ is verb, the other two banks are noun
b. State difference between open vs. closed classes.

ANSWER
 > OPEN CLASS (CONTENT/LEXICAL)

- Lexical words deal with content and vocabulary.
- They have concrete meaning that goes beyond their function in a sentence.

> CLOSED CLASS (Grammatical/Function)

- Grammatical words deal with the formation of sentences.
- They have ambiguous meaning and serve to express grammatical relationships with other words within a sentence.
c. Apply Viterbi Algorithm on the below given bigram and lexical probabilities

Initial Probabilities	
Noun	$1 \backslash 3$
Verb	0
Other	$1 \backslash 3$

Bigram Probabilities			
	Noun	Verb	Other
Noun	$1 \backslash 4$	$1 \backslash 4$	0
Verb	$1 \backslash 4$	0	$1 \backslash 4$
Other	$1 \backslash 3$	0	$1 \backslash 3$

Lexical Probabilities						
	O1=time	O2=flies	O3=like	O4=an	O5=arrow	
Noun	$1 \backslash 5$	$1 \backslash 5$	0	0	$1 \backslash 5$	
Verb	$1 \backslash 5$	$2 \backslash 5$	$1 \backslash 5$	0	0	
Other	0	0	$1 \backslash 5$	$2 \backslash 5$	0	

ANSWER

hi	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
noun	$1 / 3 \times 1 / 5=1 / 15$	$1 / 5 \times 1 / 4 \times 1 / 15=1 / 300$	$0 \times 1 / 150=0$	0	$1 / 5 \times 1 / 4 \times 1 / 16$

					875
verb	0	$2 / 5 \times 1 / 4 \times 1 / 15=1 / 150$	$1 / 5 \times 1 / 4 \times 1 / 150=1 / 3000$	0	0
other	0	0	$1 / 5 \times 1 / 3 \times 1 / 150=1 / 2250$	$1 / 3 \times 2 / 5 \times 1 / 2250=1 / 16875$	0

Question No. 2:

Apply Bayesian theorem over the below given string:
$\wedge J o h n$ got many NLP books. ${ }^{\wedge} \mathrm{He}$ found them all very interesting.
Where for lexical probabilities assume John $=0.5$, got $=0.3$, many $=0.2, \mathrm{NLP}=0.1$ and books $=0$.

ANSWER

POS Tags:

^N V A N N. ^ N V N ARA.
Recording Numbers:

	^	N	V	A	R	.

$\boldsymbol{\Lambda}$	0	2	0	0	0	0
\mathbf{N}	0	1	2	1	0	1
\mathbf{V}	0	1	0	1	0	0
\mathbf{A}	0	1	0	0	1	1
\mathbf{R}	0	0	0	1	0	0
$\mathbf{}$	1	0	0	0	0	0

Bigram Probability:

	$\boldsymbol{\wedge}$	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	$\mathbf{.}$
$\boldsymbol{\wedge}$	0	1	0	0	0	0
\mathbf{N}	0	$1 / 5$	$2 / 5$	$1 / 5$	0	$1 / 5$
\mathbf{V}	0	$1 / 2$	0	$1 / 2$	0	0
\mathbf{A}	0	$1 / 3$	0	0	$1 / 3$	$1 / 3$
\mathbf{R}	0	0	0	1	0	0
.	\mathbf{l}	0	0	0	0	0

Where lexical probability is given i.e. John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.

