Submitted To: Mam Aasma Khan Submitted By: Syed Muhammad Ali ID & Semester: 14258 – BS(SE) 5th Course: Natural Language Processing

Question No. 1:

a. Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.

ANSWER

≻ POS Tagging:

It is a process of converting a sentence to forms – list of words, list of tuples (where each tuple is having a form *(word, tag)*). The tag in case of is a part-of-speech tag, and signifies whether the word is a noun, adjective, verb, and so on.

Default tagging: is a basic step for the part-of-speech tagging. It is performed using the

Default Tagger class. The Default Tagger class takes 'tag' as a single argument. NN is the tag for a singular noun. Default Tagger is most useful when it gets to work with most common part-of-speech tag. That's why a noun tag is recommended.

➢ POS tag ambiguity:

Common parts of speech in English are noun, verb, adjective, adverb, etc. The POS tagging problem is to determine the POS tag for a particular instance of a word. The main problem with POS tagging is ambiguity.

• For Example

POS Tag Ambiguity

In English : I bank₁ on the bank₂ on the

river bank₃ for my transactions.

Bank₁ is verb, the other two banks are noun

b. State difference between open vs. closed classes.

ANSWER

> OPEN CLASS (CONTENT/LEXICAL)

- Lexical words deal with content and vocabulary.
- They have concrete meaning that goes beyond their function in a • sentence.

CLOSED CLASS (Grammatical/Function)

- Grammatical words deal with the formation of sentences. •
- They have ambiguous meaning and serve to express grammatical relationships with other words within a sentence. •

Other

0

1\4

1\3

c. Apply Viterbi Algorithm on the below given bigram and lexical probabilities

Initial		Bigram Probabilities				
Proba	abilities		Noun	Verb		
Noun	1\3	Noun	1\4	1\4	-	
Verb	0	Verb	1\4	0		
Other	1\3	Other	1\3	0	- 14	

Lexical Probabilities						
	01=time	O2=flies	O3=like	O4=an	O5=arrow	
Noun	1\5	1\5	0	0	1\5	
Verb	1\5	2\5	1\5	0	0	
Other	0	0	1\5	2\5	0	

ANSWER

hi	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
noun	1/3x1/5=1/15	1/5x1/4x1/15=1/300	0x1/150=0	0	1/5x1/4x1/16

					875
verb	0	2/5x1/4x1/15=1/150	1/5x1/4x1/150=1/3000	0	0
other	0	0	1/5x1/3x1/150=1/2250	1/3x2/5x1/2250=1/16875	0

Question No. 2:

Apply Bayesian theorem over the below given string:

^John got many NLP books. ^He found them all very interesting.

Where for lexical probabilities assume John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.

ANSWER

POS Tags:

^N V A N N. ^ N V N A R A.

Recording Numbers:

	۸	Ν	V	Α	R	•
۸	0	2	0	0	0	0
Ν	0	1	2	1	0	1
V	0	1	0	1	0	0
Α	0	1	0	0	1	1
R	0	0	0	1	0	0
•	1	0	0	0	0	0

Bigram Probability:

	^	Ν	V	Α	R	
۸	0	1	0	0	0	0
N	0	1/5	2/5	1/5	0	1/5
V	0	1/2	0	1/2	0	0
А	0	1/3	0	0	1/3	1/3
R	0	0	0	1	0	0
•	1	0	0	0	0	0

Where lexical probability is given i.e.

John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.