Iqra National University, Peshawar Department of Electrical Engineering

Mid - Term Examinationsummer2020
Date:20/8/2020

Note: Attempt all questions.PLO: program learning outcome
C:Cognitive

Name :- Muhammad Salman shahid

ID:- 15006

Instructor :- sir Himayatullah Course :- Linear algebra

|dentify $(3,2)$ entry of $A B$

$$
\begin{aligned}
A \cdot B & =\left[\begin{array}{lll}
0 & 1 & -2
\end{array}\right]-\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right] \\
& =(0+(-1)+(-4)) \\
& =0-1-4 \\
& =-5
\end{aligned}
$$

bb) Label ${ }^{\text {ba }}$ the quadratic polynomial that interpolate the $\begin{aligned} & \text { Mar } \\ & \text { ks } 5\end{aligned}$ in points $(1,3),(2,4),(3,4)$ quadratic Polynomial $P L Q$ interpolate the Point $(7,3),(2,4),(3,4)$

$$
\begin{gathered}
a_{2} x_{1}^{2}+a_{1} x_{1}+a_{0}=y_{1} \\
a_{2} x_{2}^{2}+a_{1} x_{2}+a_{0}=y_{2} \\
a_{2} x_{3}^{2}+a_{1} x_{3}+a_{0}=y_{3} \\
\left(x_{1}, y_{1}\right)=(1,3) \quad\left(x_{2}, y_{2}\right)=(2,4) \\
\left(x_{3}, y_{3}\right)=(3,7)
\end{gathered}
$$

fol:-

$$
\begin{aligned}
& a_{2}(1)^{2}+a_{1}(1)+a_{0}=3 \\
& a_{2}(2)^{2}+a_{1}(2)+a_{0}=y \\
& a_{2}(3)^{2}+a_{1}(3)+a_{0}=7
\end{aligned}
$$

$$
\begin{array}{r}
=a_{2}+a_{1}+a_{0}=3 \\
4 a_{2}+2 a_{1}+a_{0}=4 \\
a_{2}+3 a_{1}+a_{0}=7
\end{array}
$$

$$
\begin{align*}
& a: b=\left[\begin{array}{lll:l}
1 & 1 & 1 & 3 \\
4 & 2 & 1 & 4 \\
9 & 3 & 1 & 7
\end{array}\right] \\
& \tilde{R}\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
0 & -2 & -3 & -8 \\
0 & -6 & -8 & -20
\end{array}\right] \begin{array}{l}
R_{2}-4 R_{1} \\
R_{3}-9 R_{1} \\
\tilde{R}\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
0 & -2 & -3 & -8 \\
0 & 0 & 1 & 4
\end{array}\right] \\
a_{3}-3 R_{2} \\
-2 a_{1}-3 a_{0}=-8 \\
a_{0}=4
\end{array}
\end{align*}
$$

Now Put in 2

$$
\begin{gathered}
-2 a_{1}-3(4)=-8 \\
-2 a_{1}-12=-8 \\
-2 a_{1}=4 \\
a_{1}=-2
\end{gathered}
$$

Put in (1)

$$
\begin{gathered}
a_{2}+a_{1}+a_{0}=3 \\
a_{2}=-2+4=3 \\
a_{2}=3-2 \\
a_{2}=1
\end{gathered}
$$

 where $|A|=2$ and $|B|=-3$ calculate $\left|A^{-1} B^{t}\right|$
Sol:-
Since $\left|A^{-1} B^{+}\right|=\left|A^{-1}\right|\left|B^{+}\right|$
$\Rightarrow \frac{1}{|A|}|B|$ become $\left|B^{t}\right|=|B|$
so $\left|A^{-1} B^{t}\right|=\frac{1}{|A|}|B|$

$$
=\frac{1}{2} \cdot 3=\frac{3}{2}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
1 & 1 & 2 & 1 \\
0 & -3 & -1 & -6 \\
0 & -2 & -5 & 0
\end{array}\right] \begin{array}{l}
R_{2}-R_{1} \\
R_{3}-3 R_{1}
\end{array}} \\
& {\left[\begin{array}{ccc:c}
1 & 1 & 2 & 1 \\
0 & 1 & 7 / 3 & 2 \\
0 & -2 & -5 & 0
\end{array}\right] \frac{R_{2}}{-3}} \\
& {\left[\begin{array}{ccc:c}
1 & 1 & 2 & 1 \\
0 & 1 & 1 / 3 & 2 \\
0 & 0 & \frac{-13}{2} & 4
\end{array}\right] R_{3}+2 R_{2}} \\
& {\left[\begin{array}{ccc:c}
1 & 1 & 2 & 1 \\
0 & 1 & 1 / 3 & 2 \\
0 & 0 & 1 & \frac{-8}{13}
\end{array}\right] R_{3} \times \frac{2}{-13}}
\end{aligned}
$$

$$
\begin{array}{r}
x+y+2 z=1 \\
y+1 / 3 z=2 \\
z=\frac{-8}{13} \tag{iii}
\end{array}
$$

Now Put eq(ii) - in (i)

$$
\begin{aligned}
& y+\frac{1}{3} \times \frac{-8}{13}=2 \\
& y-\frac{8}{39}=2 \\
& y=2+\frac{8}{39} \\
& y=\frac{78+8}{39}=\frac{86}{39}
\end{aligned}
$$

Now Put value of y in (i)

$$
\begin{aligned}
& x+\frac{86}{39}+2\left(\frac{-8}{13}\right)=1 \\
& x+\frac{86}{39}-\frac{16}{13}=1 \\
& x+\frac{38}{39}=1 \\
& x=1-\frac{38}{39} \\
& x=\frac{1}{39}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& =3\left|\begin{array}{cc}
6 & 2 \\
0 & -3
\end{array}\right|+2\left|\begin{array}{cc}
5 & 2 \\
1 & -3
\end{array}\right|+1\left|\begin{array}{cc}
5 & 6 \\
1 & 0
\end{array}\right| \\
& =3(-18-0)+2(-15-2)+1(0
\end{array}\right)
$$

$$
\begin{aligned}
A_{12}= & (-1)^{1+2}\left|\begin{array}{cc}
5 & 2 \\
1 & -3
\end{array}\right|=17 \\
& (-1)^{3}\left(\begin{array}{cc}
-15 & -2
\end{array}\right) \\
& -1(-17)=17 \\
A_{13}= & (-1)^{1+3}\left|\begin{array}{cc}
5 & 6 \\
1 & 0
\end{array}\right|=-6 \\
= & (-1)^{4}\left(\begin{array}{cc}
0 & -6
\end{array}\right) \\
= & 1(-6)=-6 \\
A_{21}= & (-1)^{2+1}\left|\begin{array}{cc}
-2 & 1 \\
0 & -3
\end{array}\right|=-6 \\
& (-1)^{3}\left(\begin{array}{cc}
6 & -0
\end{array}\right) \\
& (-1)(6)=-6 \\
A_{22}= & (-1)^{2+2}\left|\begin{array}{cc}
3 & 1 \\
1 & -3
\end{array}\right|=-10 \\
= & (-1)^{4}(-9-1)
\end{aligned}
$$

$$
\begin{aligned}
A_{23} & =(-1)\left|\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right| \\
& =(-1)^{5}\left(\begin{array}{cc}
0+2
\end{array}\right) \\
& =-1 \not(2)=-2 \\
A_{31} & =(-1)^{3+1}\left|\begin{array}{cc}
-2 \\
6 & 2
\end{array}\right|=-10 \\
& =(-1)^{4}(-4-6) \\
& =1(-10)=-10 \\
A_{32} & =(-1)^{3+2}\left|\begin{array}{cc}
3 & 1 \\
5 & 2
\end{array}\right|=-1 \\
& =(-1)^{5}(6-5) \\
& =-1(1)=-1 \\
A_{33} & =(-1)^{3+3}\left|\begin{array}{c}
3 \\
5
\end{array}\right| \\
& =(-1)^{6}(18+10)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 1(28)=28 \\
& \text { adj } A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]^{t} \\
&=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right] \\
& A^{-1}=\frac{1}{1 A 1} \times a d j A \\
& A^{-1}=\frac{1}{-94}\left[\begin{array}{ccc}
18 & 6 & 10 \\
-17 & 10 & 1 \\
6 & 2 & -98
\end{array}\right] \\
&=\left[\begin{array}{ccc}
\frac{18}{-94} & \frac{10}{-94} & \frac{10}{-94} \\
\frac{17}{-94} & \frac{10}{-94} & \frac{1}{-9} \\
\frac{6}{-94} & \frac{2}{-94} & \frac{-28}{-94}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-9}{47} & \frac{-3}{47} & \frac{-5}{47} \\
\frac{17}{94} & \frac{-5}{47} & \frac{1}{-9} \\
\frac{-3}{47} & \frac{-1}{47} & \frac{14}{47}
\end{array}\right]
\end{aligned}
$$

