Department of Electrical Engineering Final Exam Assignment

Date: 27/06/2020

Course	Detail	S
--------	--------	---

Course Title:	Digital Signal Processing	Module:	6th
Instructor:		Total Marks:	50

Student Details

Name: ABDUL BASIT Student ID: 13684

	(a)	Determine the response $y(n), n\geq 0,$ of the system described by the second order difference equation	Marks 7
		$y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)$ To the input $x(n) = (-1)^n u(n)$. And the initial conditions are y (-1) = y (-2) = 0.	CLO 2
Q1.			
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	Marks 7
		y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)	CLO 2
Q2.	(a)	Determine the causal signal x(n) having the z-transform	Marks 6
	(u)	$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	CLO 2
		(Hint: Take inverse z-transform using partial fraction method)	
	(b)	Evaluate the inverse z- transform using the complex inversion integral	Marks 6
		$X(z) = \frac{1}{1 - az^{-1}} \qquad z > a $	CLO 2
Q.3	(a)	A two- pole low pass filter has the system response b_0	Marks 6
		$H(z) = \frac{b_0}{(1 - pz^{-1})^2}$ Determine the values of b_0 and p such that the frequency response $H(\omega)$ satisfies the condition $H(0) = 1$ and $\left H\frac{\pi}{4}\right ^2 = \frac{1}{2}$.	CLO 3

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi/2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega=4\pi/9$.	Marks 6 CLO 3
Q 4	(a)	A finite duration sequence of Length L is given as $x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{cases}$	Marks 6 CLO 2
		Determine the N- point DFT of this sequence for $N \ge L$	
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	Marks 6
		$x_1(n) = \begin{cases} 2 \\ \uparrow, 1, 2, 1 \end{cases}$ $x_2(n) = \{ 1, 2, 3, 4 \}$	CLO 2

Name: Abdul Basit 10:- 13684.

Question 1 (a)

Sol Conside the difference equation $y(n) - 4y(n-1) + 4y(n-2) = \chi(n) - \chi(n-1)$ The homogenous equation of the system is y(n) - 4y(n-1) + 4y(n-2) = 0.

The Characteristic equation of the System is

1- 41-2-0

12.41+4=0

Determine the root of the characteristic

(2)

1-2-21-21+4=0 1(1-2)-2(1-2)=6 (1-2)(1-2) $\lambda = d, \lambda, '$ Hence. Yh(n)= (12h+ (2 n2h The particular solution is yp(n)= K(-0"u(n) By substituting this solution into difference equation we obtain $K(-1)^{n}u(n)-u(k(-1)^{n-1}u(n-1)+u(k(-1)^{n-2}u(x-2)=$ $(-1)u(n)-(-1)^{n-1}u(x-1)$ 1-0x n=2 KC/+4+4) = 2 $K = \frac{2}{9}$

So
$$y(n) = \int_{-1}^{1} (1 d^{h} + (2 n 2^{h} + 2 - (-1)^{h}) a(n))$$

From the initial condition we obtain $y(0) = 1$, $y(1) = 2$

Then

$$C_{1} + \frac{2}{4} = 1$$

$$= C_{1} = \frac{7}{4}$$

$$2C_{1} + 2C_{2} - \frac{2}{4} = 2$$

$$= C_{2} = \frac{7}{4}$$

Question 1(b).

Consider the difference equation y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)To obtain the homogenous equation 7(n)=0 y(n)-0.7y(n-1)+0.1y(n-2)=0 Determine the solution to the homogenous yn(n)= 1h Substitute the solution obtained in the homogenous equation $1^{n} - 6.71^{n-1} + 0.01^{n-2} = 0$ 11-2 (12-0.71 +0.1)=0 1-0.7/+0.1=0

Therefore, the roots are.

[A-0.5] (A-0.2)=0 There fores the roots are 1=5, & hence. General form of the solution 4h(n)= C1 (X1)1/4 (2(X2)) y(n)= (1(0.2)n+62(0.5)n--il) 1= / 1= / Then 9h(n)= C+1h+121h with ruln) = S(n) we have 4/01=2. y(1)-0.7y(0)=0 4(1)=1.4 Hence Cit 6=2

These equation yield

$$C_1 = \frac{10}{3}, \quad (2 = -\frac{4}{3})$$

$$h(n) = \left(\frac{10}{3}, \frac{1}{2}\right)^{h} - \frac{4}{3}\left(\frac{1}{5}\right)^{h} U(n)$$

$$Now Step response is
$$g(n) = \frac{10}{3} \frac{1}{12} h(n-16)$$

$$= \frac{10}{3} \frac{1}{12} h(n-16)$$

$$= \frac{10}{3} \left(\frac{1}{2}\right)^{h} \frac{1}{12} \left(\frac{1}{3}\right)^{h} \frac{1}{12} \int_{k=0}^{\infty} (\frac{1}{3})^{h} \int_{k=0}^{\infty} s^{k}$$

$$g(n) = \frac{10}{3} \left(\frac{1}{2}\right)^{h} (2^{n+1} - 1) U(x) - \frac{1}{3} \left(\frac{1}{3}\right)^{h} (3^{n+1})$$

$$U(x)$$$$

Q2(a) Determine the causal signal $\chi(n)$ having the Z-transform.

 $2(z) = \frac{1}{(1-2z^{-1})(1-z^{-1})^2}$

(Hint: Take inverse Z-transform Using partial fraction method).

Solution :-

The 2-transform is,

X(Z)= 1 (1-22-1)(1-2-1)2

The expression is written as.

 $\chi(z) = \frac{1}{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{2}\right)^2}$

$$=\frac{1}{\left(\frac{7-2}{2}\right)\left(\frac{2-1}{2}\right)^2}$$

$$= \frac{Z^{3}}{(Z-2)(Z-1)^{2}} - - - 0$$

 $\chi(\tau)$ has a simple pole at $\rho_1 = 2$ and a double $\rho_2 = \rho_3 = 1$. In such a case the appropriate partial-fraction expansion is.

$$X(z) = \frac{Z^{3}}{(z-2)(z-1)^{2}} = \frac{A_{1}}{z-2} + \frac{A_{L}}{z-1} + \frac{A_{3}}{(z-1)^{2}}$$
The $2 \cdot 1/2 = \frac{Z^{3}}{z-1} = \frac{A_{1}}{z-1} + \frac{A_{2}}{(z-1)^{2}}$

The problem is to determine the coefficient A., Az and P.3.

We proceed as in the case of distinct pole To determine A, we multiply both side of by (2-2) and evaluate the result 2=-2

which we evaluated at 2=2

$$A_{l} = (2-2)((2))$$

$$A_2 = A_1 + \frac{2-2}{3-1}$$

$$A_2 = -3$$
.

Hence x(n)=[4(2)^3-3-n]u(n)

Question no 2(b).

Solution:

We have $\chi(n) = \frac{1}{2\pi i} \int \frac{Z^{n-1}}{1-az^{-1}} dz = \frac{1}{2\pi i} \int \frac{z^n dz}{z-a}$

where C is a Circle of radius greater than [al. We shall evaluate this integral using with $f(2)=2^h$. We distinguish two Coses.

I If $n \ge 0$, f(2) has only zeros and hence ho poles inside C. The only pole inside C is z = a. Hence $\chi(n) = f(z_0) = a^n$, $n \ge 0$.

2) If nzo, f(z)= z" has an n+1-order

pob of z=e which is also inside c.

Thus there are confributions from both

poles. For n=-1 we have.

$$\gamma(-1) = \frac{1}{2\pi i} \int_{C} \frac{1}{Z(Z-a)} dz = \frac{1}{Z-a} \Big|_{Z=0}$$

$$+\frac{3}{4}\left|\frac{3}{4}=a\right|=0$$

if n=-2, we have

$$\gamma(-d) = \frac{1}{2\pi S} \int_{C} \frac{1}{z^{2}(z-a)} dz = \frac{d}{dz} \left(\frac{1}{z-a}\right)\Big|_{z=0}$$

$$+ \int_{2^{+}} \int_{2=0}^{2=0}$$

By Containing in the same way we can show that $\chi(n)=0$ for $n \ge 0$, Thus $\chi(n)=a^n u(n)$.

Question No 3(a).

Solution

At w=0 we have

H(0)= 50 (1-P)2=1

hence

bo = (1-P)2

At W= T/4

 $H\left(\overline{A}\right) = \frac{\left(\left(-P\right)^{2}\right)}{\left(\left(-Pe^{-j\pi/4}\right)^{2}\right)}$

= (1-P) (1-pws(x/4)+jpsin(x/4))2

 $=\frac{(l-P)^2}{(l-P/\sqrt{2}+jP/2)^2}$

Hence

00 equivalently $\sqrt{2}(1-P)^2 = 1-1P^2 - \sqrt{2}P$

The value of p=0.32 sortisties this equation (onsequently, the system function for the desired filter is

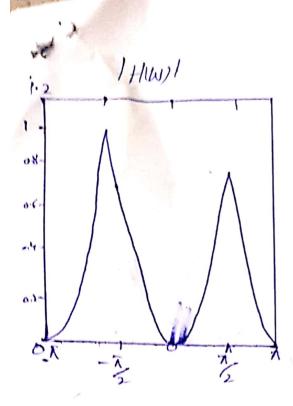
H(2) = 0.46 $(1-0.322^{-1})^{2}$

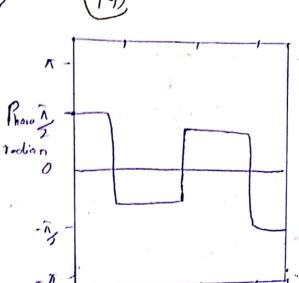
Question No 3(b):

Sol Clearly, -the filter must have poles of P1.2= re11x/2.

and Zeros at Z=1 and Z=-1, Consequently,
the system function is.

1-102)= 6-11(2-11) (2-11/2-1)x) = 6-2-1





The gain factor is determined by evaluating
the frequency response $H(\omega)$ of the filter
at $\omega = \bar{\Lambda}/2$ thus we have

$$H\left(\frac{\pi}{2}\right) = 6\frac{2}{1-r^2} = 1$$

The value of r is determined by evalualing $H(\omega)$ at $\omega = 4\pi/9$. Thus we have.

or equivalently

1.94(1-22)=1-1.8882464

The value of $\eta^2 = 0.7$ satisfies this equation. Therefore, the system function for the desired filter is

H(z)= 0.15 + z⁻².

Question 4 (a).

Sol

The fourier transform of this sequence is

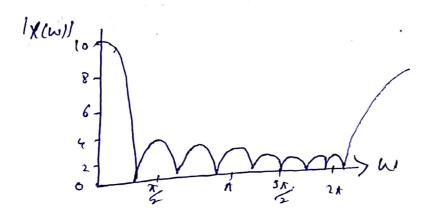
X(w)= & y(n)e Jun

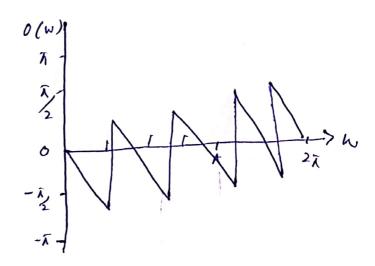
 $= \frac{L-1}{1-e^{-j\omega n}} = \frac{1-e^{-j\omega l}}{1-e^{-j\omega l}} = \frac{\sin(\omega L/2)}{\sin(\omega l/2)} e^{-j\omega(l-1/2)}$

The magnitude and phase of X(w) are illustration for L=10. The N-point DFT of $\chi(n)$ is simply X(w) evaluated at the set of N equally speed frequencies $w_{K}=2\pi KlN$, K=0,1...N-1 Hence.

 $X(K) = \frac{1 - e^{-j2\pi KL/N}}{1 - e^{-j2\pi K/N}}, 10 = 0, 1, ---, N-1$

= Sin(TKL/N) e-JKK(1-1)/N. Sin(KK/N





If N is Selected such that N=1, then
the DFT become $\chi(c) = \begin{cases} L_1 & K=0 \\ 0, & K=1,2,\dots,2-1 \end{cases}$

Thus there is only one non zero value in DFT: This is apparent from observation of X(W) since X(W)=0 at the frequencies $w_k = \frac{2\pi k/2}{K + 0}$. The reader should verify that $\chi(n)$ can be recovered from $\chi(K)$ by performing an L-point DFT.

Ovestion 4(b).

Solution:

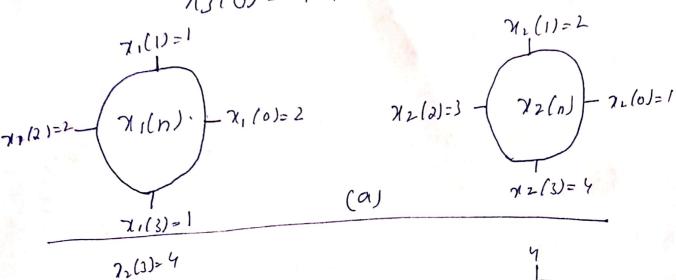
 $\chi_1(n) = \{ \{ \{ \}, \{ \}, \{ \} \} \}$ $\chi_2(n) = \{ \{ \{ \}, \{ \}, \{ \}, \{ \} \} \}$

Fach sequence consists of four nonzero points. For the purpose of illustrating the operation involved in circular convolution it is desirable to graph each sequence as point on a circle.

Now, $\chi_3(m)$ is obtained by circularly convolving $\chi_1(n)$ with $\chi_2(n)$ as specified by beginning with m=0 we have $\chi_3(0)=\frac{3}{n=0}$ $\chi_1(n)$ $\chi_2((-n))$ N.

x(-n))y is simply the sequence x, (n)
folded and graphed on a circle as
illustrated Finally, we sum the values
in the product sequence to obtain.

13(0)=14.



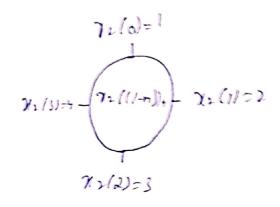
(b)

 $7_{2}(3) > 4$ $7_{2}(3) > 4$ $7_{2}(0) = 1$ $7_{2}(0) = 1$ $7_{2}(0) = 2$

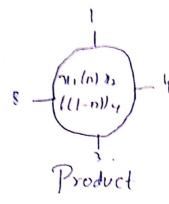
Folded sequence

 $6 - \left(\frac{\gamma_{1}(n)\gamma_{1}}{(l-n)\gamma_{4}}\right) - 2$

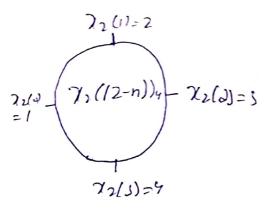
Product sequence



Folded seguence rotated by one Unit in time. (C)



Sequence



Folded sequence rotated by Unit in time.

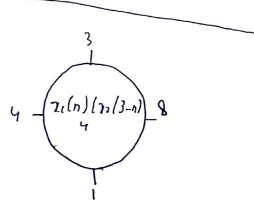
2-(1/n) 7/L ((2-n))4-6

 $\left(d\right)$

(e)

Product Sequence

Folded Sequence rotated by there Unit in time.



Product sequence

For m=1 We have $23(U = \frac{3}{2}) \times (n) = (1-n)/4.$

It is easily verified that $\gamma_2((l-n))_4$ is simply the sequence $\gamma_2((l-n))_4$ rotated

(ounter cluckwise by one Unit in time $\gamma_3(l)=6$

For m=d we have.

 $\gamma_{3}(2) = \frac{3}{2} \gamma_{1}(n) \gamma_{2}((2-n))_{4}$

Now $\chi_2((2-n))_4$ is the folded sequence rotated two unit of time in the Counterclock wise direction. The product Sequence $\chi_1(n)_{11}((2-n))_4$.

12 (2) = 14

The folded sequence $\chi_1((-n))y$ is now rotated by three unit in time to yield $\chi_2((3-n))y$ and the resultant sequence is multiplied by $\chi_1(n)$ to yield the product sequence $\chi_3(3)=16$.

We observe that if the computation above is continued beyond m=3. we simply repeat the sequence of four values obtained above. Therefore, the circular convolution of the two sequence x1(n) and x2(n) yield the sequence

715(n)= { 14, 16, 14, 16}