
Name: Aftab Khan ID:12985
Subject: Programming Fundamental

Answer 1(a):
if Statement Purpose:

C++ has the following conditional statements: Use if to specify a
block of code to be executed, if a specified condition is true.

Use else to specify a block of code to be executed, if the
same condition is false. Use else if to specify a new condition to
test, if the first condition is false.

Syntax:

if(condition){

// set of instruction when condition is true

}

We use if statement in two forms and are as follows:

 if-else
 if-elseif-else

if-else block:

if(number>0){

printf("Number is positive");

}

else{

printf("Number is not positive");

}

if-elseif-else block:

if(number%2==0){

printf("Number is a multiple of 2");

}

else if(number%3==0){

printf("Number is a multiple of 3");

}

else{

printf("Number is neither a multiple of 2 nor 3");

}

Answer 1(b):

Answer 2(a):

Logical Operators:
Logical operators play a significant role in any programming
language and they are important as they help us to take decisions
based on certain conditions.

Types of Logical Operators:
There are three types of Logical Operators:

 Logical AND
 Logical OR
 Logical NOT

Explanation:

Logical AND (&&): If both the conditions are true then, it will
execute the statements.

Logical OR (||): If any one of the conditions is true, then it will
execute the statements.

Logical NOT (!): If the condition is true, this operator will make
it false.

Answer 2(b):
CODE:

Hot:

Tolerable:

Warm:

Cool:

Answer 3(a):
Looping:

In computer science, a loop is a programming structure that repeats a
sequence of instructions until a specific condition is met.
Programmers use loops to cycle through values, add sums of
numbers, repeat functions, and many other things.

Loops are supported by all modern programming languages, though
their implementations and syntax may differ.

In C++ language there are three types of loops are used.
They are:

1) For loop
2) While loop
3) Do-while loop

1) For loop:
The syntax of for loop is
for (initial statement; condition; increment or decrement)
{

//body of the for loop
//statement1
//statement2

}

2) While loop:
In this loop, the condition is to check first then the body of the
loop is executed.
It is entry-controlled loop.

The syntax of for loop is
while(condition)
{

//body of the while loop
//statement1
//statement2

}

https://techterms.com/definition/computer_science
https://techterms.com/definition/function
https://techterms.com/definition/programming_language
https://techterms.com/definition/syntax

3) Do while loop:
It is exit controlled loop.
In this loop, the body of the loop is executed first
the condition check.

The syntax of the do-while loop is
do
{

//body of the loop
}while(condition)

Answer 3(b):

Answer 4(a):

Purpose of “break” statement:

 When the “break” statement is located inside a loop, it will
terminate the loop immediately. Then the program control
resumes at the next statement following the loop.

 The “break” can be used to terminate a switch statement case.

 If the break statement used in the innermost loop of a nested loop,
it will terminate the current loop and the program continues
executing the next statement or immediate outer loop.

Purpose of “continue” statement:

 It is used inside the loops.

 When a continue statement is encountered inside a loop, control
jumps to the beginning of the loop for next iteration, skipping the
execution of statements inside the body of loop fort the current
iteration.

 In “for” loop, the “continue” statement causes the conditional test
and increment portions of the loop to execute.

 In the “while” and “do-while” loops, “continue” statement causes
the program control to pass to the conditional tests.

Answer 4(b):

Answer 5:

 Character set:
Character set is a set of valid characters that a language can
recognize. A character represents any letter, digits, or any other sign.

Examples:

 Letters : A-Z, a-z

 Digits : 0-9

 Special Symbols : Space + - ∗ ⁄ ^ \ () [] { } = != < > . ′ ″
$, ; : % ! & _ # <= >= @

 White Spaces : Blank space, Horizontal tab (→), Carriage return
(↵), Newline, Form feed

 Other Characters : C++ can process any of the 256 ASCII
characters as data or as literals.

 Constants:
A constant, like a variable, is a memory location where a value can
be stored. Unlike variables, constants never change in value.

Examples:
const int kill_bonus = 5000;

const int var = 5;

 Variable:
A variable is a name which is associated with a value that can be
changed. For example when I write int num=20; here variable name
is num which is associated with value 20, int is a data type that
represents that this variable can hold integer values.

Examples:
a = 5;
b = 2;
a = a + 1;
result = a - b;

 Keyword:

Keyword is a predefined or reserved word in C++ library with a
fixed meaning and used to perform an internal operation.

Keywords are those words whose meaning is already defined by
Compiler. These keywords cannot be used as an identifier. Note
that keywords are the collection of reserved words and predefined
identifiers. Predefined identifiers are identifiers that are defined by
the compiler but can be changed in meaning by the user.

Examples:

C++ provides 64 keywords

for, break, continue, switch, int float, double, char, try, catch, while,
etc

 Relational Operators:
Relational operators are also known for comparison operators.
Relational operators are used to relating the condition, that is it
compares the two values and prints the result. In this article, we are
going to see those relational operators in C++ with the help of
examples.

Different Relational Operators in C++:
There are total 6 relational operators ==, !=, <, >,<=, >= which are
explained below:

1. Less than Operator (<):
This operator is called less-than the operator. It checks whether the
value of the left operand is less than the value of the right operand or
not. If it satisfies the condition then, it returns true as a value else it
returns false.

2. Greater than Operator (>):
This operator is called greater than the operator. It checks whether
the value of the left operand is greater than the value of the right
operand. If it satisfies the condition it returns true as value else it
returns false.

3. Less than or Equal to Operator (<=):
This operator is called less than or equal to the operator. It checks
whether the value of the left operand is less than or equal to the
value of the right operand. If it satisfies the condition it returns true
as value else it returns false.

4. Greater than or Equal to Operator (>=):
This operator is called as greater than or equal to the operator. It
checks whether the value of the left operand is greater than or equal
to the value of the right operand. If it satisfies the condition it returns
true as value else it returns false.

5. Equal to Operator (==):
This operator is called as is equal to the operator. It checks whether
the value of the left operand is equal to the value of the right operand.
If it satisfies the condition it returns true as value else it returns false.

6. Not Equal to Operator (!=):
This operator is called as is not equal to the operator. It checks
whether the value of the left operand is not equal to the value of the
right operand. If it satisfies the condition it returns true as value else
it returns false.

THE END

	Different Relational Operators in C++:
	1. Less than Operator (<):
	2. Greater than Operator (>):
	3. Less than or Equal to Operator (<=):
	4. Greater than or Equal to Operator (>=):
	5. Equal to Operator (==):
	6. Not Equal to Operator (!=):

