Department of Electrical Engineering Course Title: Electrical Network Analysis Module: 4th

Student Detail

Name :- Muhammad Ahmad.
Student ID # 14563. Student signature : Gruniqd
Student Signature :- Andre
- 4xy x 0.5 x 100

Name :- Muhammad Ahmad. Student ID # 14563. Student Signature :-Grue QN01:- The switch in fig 1 has been in possition A for a long time At t=0 the switch moves to B. Determine N(t) for t>0 & calculate its value at t=25 Solution :-3KA A B Z=0 XT. = 0.5mF SKAZ (F) 30V 24V (tig 1. The capacilor acts as open chi to de when it at possition ito The Vollage across the lapacitor just before ito is obtained by vollage division. $V(0) = \frac{5}{(5+3)Kr} = 15V$ lapacitor voltage cannit change instantion-eouly because of storing quadity. V(0) = V(0) V(t) = 15V. 1

When I>O the switch is in position B As Per Therenin Law Therenin resistance connected to the capacitor is $R_{TH} = 4KR$ $J = R_{m}C$ $= 4x \mu s \times 0.5 \times 10^{5}$ = 125As we dissue capacitor act as open chi to de $V(\infty) = 30V$. Now $V(\bar{t}) = (V(\infty) + [V(0) - V(\infty)]e^{-\frac{1}{2}})$ = 30 + (15 - 30)e^{-\frac{1}{2}} = 30 - 15e^{-0.5E} V Now at I. When T=25 V(2)= 30 - 15 e- 8/3 = 30-15 E HA 2 30-15 e⁻¹. = 30-15(0.3678) = 30 - 5.517= [24.483V] when I= As. V(8) = 30-15 e 43 2 30-15 e⁻⁸/2 = 30-15(0.0183) 2 30 - 0.2745. = 29.7255V 2

3

GNO2:- DeTermine the Inductor current for both E>O & TLO for the CKE. 2=0 VI 6A (1 325 242 33H Solu Elong-As we know ELO the switch is closed and Inductor acts as short ckt. Thus the inductor current i = 6A. Jor I>O the switch is opend & Time constant J=L R J=3. Now the inductor current $i(t) = 6e^{t/y}$ $\frac{-\overline{t}_{3/2}}{2(t) = 6e^{-t/y}}$ $i(\bar{l}) = 6e^{-2\bar{l}}$ A

Answer i(t) = $6e\frac{2t}{3}u(t)A$

GNO3. A series RLC CAT is describe by
Ldi + R di + i = 10.
di' dt c
4 ind the response whe
$$L = 0.5H, R = 4.9$$
 f
 $C = 0.2F$, Let $i(0) = 1$, $di(0) = 0$.
 dt
 $Ld'i + R di + i = 10$
 $dt' = R di + i = 10$
 $dt' = R di + i = 10$
 $dt' + R di + i = 10$.
 $dt' + R di + i = 10$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + i = 10C$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 20 \rightarrow 0$.
 $dt' + R di + 10i = 15 - 70$.
 $d'i + R di + 1 i = 15 - 70$.
 $d'i' + R di + 1 i = 15 - 70$.

$$\begin{array}{c} compare @ and @ \\ R = \vartheta \rightarrow @ \\ L = 10 \rightarrow @ \\ L = 10$$

The writtent is over damped case is given i(I) = Is + A, est + Aze^{sz} I - 79 Substitule Z= O, i(0) = Is + A, + A2. $1 = 2 + A_1 + A_2$ Yhus Ay + Az = -1 -7 0. From (a) Find di(E). $\frac{di}{di}(\overline{z}) = A, s, e^{s_1 \overline{z}} + A_2 e^{s_2 \overline{z}}$ Iz O di (0) = A,S, + A232. di Rutting value. (-4+16)A, + (-4-16)A2=0 → (1) Solue (1) and (1) 4. A, = -1. 316. $A_{2} = 0.316.$ $i(t) = 2 - 1.316e^{(-4+36)t} + 0.316e^{(-4-36)t} A$ GNOIT: A series RLC CKD has R=100, L=240H and C=10 mF.If the imput voltage is V(I) = 10 cos >I, Find the current Flowing through the ckI. cki.

7

2404 1002 M -000-IomF. V(t) (+ Sdullon:-(100 +1430) .9-V(T) = 10 COS 2TV. Here The amplitude $V_m = 10V$. The angular Frequency $\omega = 2 \operatorname{rad}/s$. The phase angle $\phi = 0^\circ$. The phaser is a complex number that represents the amplitude & phase sinu sold of a N(T) = 10 40° V. Now Inductive Resistance Reactance of the CKE. $X_{L} = \omega L$. $X_{L} = (2 \tan(5)) (240H)$. = 480 - 2. Now the capacillue Readance of cks. $X_{c} = 1$ (2 7ad/s)(10 m × 10-3) $\frac{2}{20 \times 10^3} \frac{1}{20}$ 505

Now the impedance(I) of cki. I = R + JX_L - JXc. Z= (100 + 480J - JSO) SL. (100 + j 4 30) s. (I) Impedance in Phasor Jorm. Z= (100 - J430) R ~(100)² + (430)² L lan⁻¹ (430) 100 J 10000 + 184900 L Ean' 4.3. V194900 L(76.9081). 2 441.47 6.908 D Current (I) For the CKS. 2= V(E) substitute 1020°V for N(T) 221011020°V 441.47276.9081°r 210 2 [0-(76.908]] A 441.47 [0-(76.908]] A = 22.65 L = 76.90 mAmp i= 22.65 cos (20+ 76.98) mA 2 = 22.65cos (22-76.98) mA Oxlo.

GNOS Find V(E) and i(E) in the cke Shown in \$19 3. 2 UN Solution :-0.2H gV Vs = 20 sin(102 (+ + 30)V V, = 20 Sin (10 [+ 30) V. NS = 20 COS (10E + 30-90°) V Ns = 20 (05(102-60°)V VS= 20 L-60°V. w= lorad/sec. XL = JwL. 0.2H= Jx10x0.2. 0.2Hz J2.D. equen Chi can be represented as 2>42 from the arepresented 202-68V, JT2JR CKE 7=4+ 722. Hence the current is $I = \frac{20 \ L - 60^{\circ}}{\sqrt{4^2 + 2^2} \ L \ \ell a \ m^2} \left(\frac{2}{3} \right)$ $\frac{T_{z}}{4.4722} \frac{202-60^{\circ}}{4.4722} \tan^{1}(0.5).$ = 202-60° I 4.4722 26.57°.

 $I = 4.4722 - 86.57^{\circ}$ Now $i(\overline{L}) = 4.472 \cos(10\overline{L} - 86 - 57^{\circ}).$ $i(\underline{L}) = 4.472 \sin(10\overline{L} - 86 \cdot 57 + 90)$ $i(\underline{L}) = 4.472 \sin(10\overline{L} + 3.43^{\circ})A$ Noleage Autors inductor $V = J \ge xi$. $V = J \ge xi$. $V = J \ge xi$. Converting polar From & Rectangular Form. $V = J \ge x(0.26756 - J4.464)$. V= 8.928 + 70.53512). V= (1(8.926) + (0.53512)2) LEan" (0.5312) 8.928 V= 8.94423.4V. V(E) = 8.944 cos (10(+3.4°) V(T)= B.944 Sin (100+3.40+90°). V(I) = 8.944 sin (101+3.4°+90)/N