

Final Assignment
Software Design & Architecture

 Submitted By: Muhammad Zain Ul Abideen

 ID# 13740

 BSSE

 Submitted To: Respected Ma’am Aasma Khan (Lecturure)

Final Assignment

Question 1:

a) What is Software Architecture? Why is software architecture design so important?

Ans: Software Architecture:

Architecture serves as a blueprint for a system. It provides an abstraction to manage the

system complexity and establish a communication and coordination mechanism among

components.

 It defines a structured solution to meet all the technical and operational

requirements, while optimizing the common quality attributes like performance

and security.

i. Further, it involves a set of significant decisions about the organization related to

software development and each of these decisions can have a considerable impact

on quality, maintainability, performance, and the overall success of the final

product. These decisions comprise of −

 Selection of structural elements and their interfaces by which the

system is composed.

 Behavior as specified in collaborations among those elements.

 Composition of these structural and behavioral elements into large

subsystem.

 Architectural decisions align with business objectives.

 Architectural styles guide the organization.

Importance:

 There are three main points of software architecture and design which are as follow:

1. Communication among stakeholders: Software architecture represents a common

abstraction of a system that most if not all of the system's stakeholders can use as a

basis for mutual understanding, negotiation, consensus, and communication.

2. Early design decisions: Software architecture manifests the earliest design decisions

about a system, and these early bindings carry weight far out of proportion to their

individual gravity with respect to the system's remaining development, its

deployment, and its maintenance life. It is also the earliest point at which design

decisions governing the system to be built can be analyzed.

3. Transferable abstraction of a system: Software architecture constitutes a relatively

small, intellectually graspable model for how a system is structured and how its

elements work together, and this model is transferable across systems. In particular, it

can be applied to other systems exhibiting similar quality attribute and functional

requirements and can promote large-scale re-use.

b. Explain any four tasks of architect.

Ans: The four basic tasks of an architect are:

1. An architect performs static partition and decomposition of a system into subsystems and

communications among subsystems.

– A software element can be configured, delivered, developed, and deployed, and is

replaceable in the future.

– Each element's interface encapsulates details and provides loose coupling with

other elements or subsystems.

2. An architect perform tradeoff analysis on quality attributes and other nonfunctional

requirements during the selection of architecture styles.

– For example, in order to increase a distributed system's extensibility, portability, or

maintainability, software components and Web services may be the best choice of

element types, and a loose connection among these elements may be most

appropriate.

3. Architect establish dynamic control relationships among different subsystems in terms of

data flow, control flow orchestration, or message dispatching.

– An architect control the flow of data in a software system and also explain the path

for data flow.

– If there is any problem in data flow or control flow orchestration a message has to

be dispatch.

4. Consider and evaluate alternative architecture styles that suit the problem domain at hand.

– An architect has to keep an alternative style for that software designing if any

problem arises he has to be completely ready for solving that problem without any

further delay.

Question No: 02

 Explain Architecture Business Cycle (ABC) in detail with figure.

Definition: Architecture Business Cycle (ABC): “Architecture Business Cycle (ABC) is

description of a system, used to represent relationship among structures/ components of the system

to the environment in which the system is developed and implemented.”

Fig: Architecture Business Cycle (ABC)

The organization goals of Architecture Business Cycle effect requirements, which effect an

architecture, which effects a system. The architecture flows from the architect's experience and

the technical environment of the day.

Main three requirements for Architecture Business Cycle (ABC) are as follow:

i. Case study

ii. Methods

iii. Techniques

i. Case studies: of successful architectures crafted to satisfy demanding requirements, so as to

help set the technical playing field of the day.

ii. Methods to assess an architecture before any system is built from it, so as to mitigate the

risks associated with launching unprecedented designs.

iii. Techniques for incremental architecture-based development, so as to uncover design flaws

before it is too late to correct them.

Building the ABC: To build an ABC we have to identify the influences to and from

architectures

1. Stakeholders influences the architecture:

Stakeholders are:

· The customer,

· the end users,

· the developers,

· the project manager,

· the maintainers, and

· even those who market the system.

Stakeholders have different concerns that they wish the system to guarantee or optimize, including

things as diverse as providing a certain behavior at runtime, performing well on a particular piece

of hardware, being easy to customize, achieving short time to market or low cost of development,

gainfully employing programmers who have a particular specialty, or providing a broad range of

functions.

Fig: Stakeholders giving suggestions to the architect

2. Architecture are influenced by the developing organization:

1. In addition to the organizational goals expressed through requirements, an architecture is

influenced by the structure or nature of the development organization.

2. For example, if the organization has an abundance of idle programmers skilled in client-server

communications, then a client-server architecture might be the approach supported by

management.

3. If not, it may well be rejected. Staff skills are one additional influence, but so are the

development schedule and budget.

There are three classes of influence that come from the developing organization: immediate

business, long-term business, and organizational structure.

3. Architecture are influenced by the background and experience of the architects:

1. If the architects for a system have had good results using a particular architectural approach,

such as distributed objects or implicit invocation, chances are that they will try that same

approach on a new development effort.

2. Conversely, if their prior experience with this approach was disastrous, the architects may be

reluctant to try it again.

3. Architectural choices may also come from an architect's education and training, exposure to

successful architectural patterns, or exposure to systems that have worked particularly poorly or

particularly well.

4. The architects may also wish to experiment with an architectural pattern or technique learned

from a book (such as this one) or a course.

Architectures are influenced by the technical environment:

1. A special case of the architect's background and experience is reflected by the technical

environment.

3. The environment that is current when an architecture is designed will influence that architecture.

4. It might include standard industry practices or software engineering techniques prevalent in the

architect's professional community.

5. It is a brave architect who, in today's environment, does not at least consider a Web-based,

object-oriented, middleware-supported design for an information system.

 Ramifications of influences on an architecture:

1. Influences on an architecture come from a wide variety of sources. Some are only implied,

while others are explicitly in conflict.

2. Almost never are the properties required by the business and organizational goals consciously

understood, let alone fully articulated.

3. Indeed, even customer requirements are seldom documented completely, which means that the

inevitable conflict among different stakeholders' goals has not been resolved.

4. However, architects need to know and understand the nature, source, and priority of

constraints on the project as early as possible.

5. Therefore, they must identify and actively engage the stakeholders to solicit their needs and

expectations.

6. Without such engagement, the stakeholders will, at some point, demand that the architects

explain why each proposed architecture is unacceptable, thus delaying the project and idling

workers.

7. Early engagement of stakeholders allows the architects to understand the constraints of the

task, manage expectations, negotiate priorities, and make tradeoffs.

8. Architecture reviews and iterative prototyping are two means for achieving it.

9. It should be apparent that the architects need more than just technical skills.

10. Explanations to one stakeholder or another will be required regarding the chosen priorities of

different properties and why particular stakeholders are not having all of their expectations

satisfied.

11. For an effective architect, then, diplomacy, negotiation, and communication skills are

essential.

12 .The influences on the architect, and hence on the architecture, are shown in figure. Architects

are influenced by the requirements for the product as derived from its stakeholders, the structure

and goals of the developing organization, the available technical environment, and their own

background and experience.

The architectures affect the factors that influence them:

1. The main message of this book is that the relationships among business goals, product

requirements, architects' experience, architectures, and fielded systems form a cycle with

feedback loops that a business can manage.

2. A business manages this cycle to handle growth, to expand its enterprise area, and to take

advantage of previous investments in architecture and system building.

3. Some of the feedback comes from the architecture itself, and some comes from the system

built from it.

The architecture affects the –

 Structure of the developing organization.

 Goals of the developing of the organization.

 Customer requirements with reusability.

 The process of the system building will affect the architect’s experience with subsequent
systems.

Question No: 03

Explain ABC Activities?

ABC includes the following activities

a. Create the business case.

b. Understand the requirement.

c. Create the architecture.

d. Document & communicate the architecture.

e. Analyse the architecture.

f. Implement the system based on architecture

g. Confirms the implementation.

Creating the business case for the system
It is simple to create a business case than understanding the needs of market How much should

be the product cost? What is the Targeted market? What is the targeted time to market? Will it

need to interface other system? Are there system limitations

Understanding the requirements
There are variety of techniques to understand requirements from stakeholders. Object oriented

analysis: use cases & scenarios Safety Critical Systems: Finite state machine models Formal

specification languages Quality attributes Prototypes Regardless of technique used, -- the desired

qualities of the system to be constructed determine the shape of architecture. | Website for

Students

Creating the architecture
Conceptual integrity A small no. of minds coming together to design the system’s architecture.

Communicating the architecture
For effective architecture It must be communicated clearly and unambiguously to all

stakeholders. Developers must understand work assignments. Testers must understand the task

structures Management must understand the scheduling implications

Analyzing the architecture
Out of multiple designs, after analyzing, some design will be accepted or some are rejected.

Evaluating an architecture for the qualities it supports is essential to ensure the stakeholders

satisfaction (needs). Scenario- based techniques are for evaluation of architecture. | Website for

Students

Implementing based on the architecture

Concerned with keeping the developers faithful to the structures. Should have an environment

that assists developers in creating the architecture. Ensuring conformance to an architecture

Finally, when an architecture is created and used, it goes into maintenance phase. Constant

vigilance is required to ensure that actual architecture and its implementations remain faithful to

each other.

Confirming the implementations

The final step in the cycle is to confirm the implementations and reviewed by a single architect

or small group of architects. gather both the functional requirements and a well specified,

prioritized list of quality attributes. be well documented, with at least one static view and one

dynamic view. be reviewed by the system’s stakeholders. be analyzed for applicable quantitative

measures and formally evaluated for quality measures.

Question No 04:

Pair programming is an agile software development technique in which two programmers work

together at one work station. One types in code while the other reviews each line of code as it is

typed in. The person typing is called the driver. The person reviewing the code is called the

observer. The two programmers switch roles frequently (possibly every 30 minutes or less).

Suppose that you are asked to build a system that allows Remote Pair Programming. That is, the

system should allow the driver and the observer to be in remote locations, but both can view a

single desktop in real-time. The driver should be able to edit code and the observer should be able

to “point” to objects on the driver’s desktop. In addition, there should be a video chat facility to

allow the programmers to communicate. The system should allow the programmers to easily swap

roles and record rationale in the form of video chats. In addition, the driver should be able to issue

the system to backup old work.

 Draw a use case diagram to show all the functionality of the system.

 Describe in detail four non-functional requirements for the system.

 Give a prioritized list of design constraints for the system and justify your list and the ordering.

 Propose a set of classes that could be used in your system and present them in a class diagram

Use case diagram of all functionality:

Answer

Open Application

Video Call

Accept Call

Reject Call

 Close Application

User/Receiver User/Receiver

For Non-Functional requirements for the system:

Ease of Use: The front-end interface must be simple and easy to use.

Real-time performance: The Observer should be able to see the changes made by the Driver

immediately without delay; the video chat should be smooth without delay also.

Availability: The system will be available all the time.

Probability: The users will be able to use the application regardless of what their computer or

system might be

Give a prioritized list of design constraints for the system and justify your list and the

ordering.

Reason:

We prioritized the list as follow

 Easy to use

 Availability

 Probability

 Cost

Our top priority is that the application is easy to use so every user can operate the application and

will not have any kind of problem while working, the availability of the application for 24 hours

is necessary but due to updates it might not provide 24 hour service , the probability of the

device would be of great service regardless of the system specifications of the user and with less

cost the user can easily acquire the product.

Example” Security”

The system must be secured is NFR. The design constraints could be user authentication and it

must be in place., the communication protocol must be encrypted, and the data must be stored on

a server behind firewall.

Propose a set of classes that could be used in your system and present them in a class diagram

Programmer

Swap Role ()

Driver

Edit Lode ()

Observer

Point an Object

()

Desktop

Apple PC PC Unknown

Desktop

GUI Manager

Data Manager

Code

Version No:

String

Video

Data String

Rationale

Data: String

No of Video: Video

 Edit

code

Point at

object

Manage the

display

Access

And

Update

Manage

