Department of Electrical Engineering Assignment Date: 20/04/2020					
Course Title: Instructor:	<u>Course Details</u> Signals & Systems Engr.Mujtaba ihsan sir	Module: Total Marks:	04 30		
	Student Details				
Name:	farhan shah	Student ID:	13180		

Q1.	(a)	Evaluate y[n] using convolution summation.		
		3	08	
			CLO 2	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		1 2 n 1 2 n		
	(b)	Sketch block diagram for the given system.		
		y[n] = x[n] + x[n-2]		
			CLO 2	
Q2.	(a)	Sketch the transformed versions for the signal x (t) mentioned in i. and ii.		
			08	
		3 t		
	i	x (t + 5) and x (3t) Marks 08		
	ii.			
	(b)	Outline the given system as invertible or non-invertible, linear or non-linear, causal or M		
	()	non-causal. Give the reason for you answers too.		
	i.	$y[n] = x^2[n]$		
	ii.	y[n] = x[n+2]		
Q3.		Fill in the blank.		
		If a time shift in the input signal results in an identical time shift in the output signal, the		
		system is said to be	CLO 1	

Page=01
Question+01 fast (4)
Evaluate
$$y(n)$$
 using convolution Summation:
Answer:
The Summation is called the convolution
sum of the sequence $n(n)$ and $h(n)$
and verticeanted compactly as:
 $y(n) = n(n) \pm h(n)$
is note Known
 $n(n) = 2n(n) \pm 2(n-1) \pm 3n(-2)$
 $y(n) = n(o) g(n) \pm n(1) f(n-1) \pm n(2) g(n-2)$
 $n(n) = \sum_{k=0}^{2} n(n) f(n-k)$
for $y(n)$
 $y(n) = \sum_{k=0}^{2} n(n) f(n-k)$
 $f(n) = \sum_{k=0}^{2} n(n) f(n-k)$

Page = 02 Question + 01 part (b) Sketch block diagram for the given system $\gamma[m] = \gamma[m] + \gamma[m-2]$ Answer:-Given $\gamma(n) = \chi(n) + \chi(n-2)$ The graph is. 2[2] 2 Ym] Question (a) part (b) butline the given system as muntiple or non-inversible linear or non-linear lausal or non-lausal Given reason. (1) $Y(m) = x^2 (m)$ (ii) $\gamma(m) = \gamma(m+2)$ Answer:-The system is non-invertible, because we cannot determine the sign of the Input from knowledge ef output.

Scanned with CamScanner

Scanned with CamScanner

Page=04

Translation:-above figure show translation which is from right to left. Att=3 , n(t)=1 At trs=3, x(t)=1 t=-5+3 t=-2 Compression1- 7 (3+) At t=3, 2(±)=1 At 3t=3, 2(3t)=1 3t=3 t= 3/3 t=1 S_{6} $\gamma(t) = \gamma(t-3), z(t) = \gamma(3t)$ (ii) n(t/4) and n(t-2)Expansion mt/y) 1-At 2 t=3 , n(t) =1 At t/4=3 > n(t/4)=1

Scanned with CamScanner

Scanned with CamScanner