Ali Haider
 14259

Sessional Assignment

Course: Natural Language Processing Instructor: Mam Aasma Khan
Date: May 10, 2020

Note: Attempt all Questions.
Question No. 1:
a. Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.

ANSWERHIA

POS Tagging:

It is a process of converting a sentence to forms - list of words, list of tuples (where each tuple is having a form (word, tag)). The tag in case of is a part-of-speech tag, and signifies whether the word is a noun, adjective, verb, and so on.
Types of POS Tagger: Most of POS-tagging algorithms fall under
Rule-Based POS Taggers
Stochastic POS Taggers
Transformation based POS Taggers
Hidden Markov Model POS Taggers
Default tagging: is a basic step for the part-of-speech tagging. It is performed using the Default Tagger class. The Default Tagger class takes 'tag' as a single argument. NN is the tag for a singular noun. Default Tagger is most useful when it gets to work with most common part-of-speech tag. That's why a noun tag is recommended.

POS tag ambiguity:

Common parts of speech in English are noun, verb, adjective, adverb, etc.
The POS tagging problem is to determine the POS tag for a particular instance of a word. The main problem with POS tagging is ambiguity. In English, many common words have multiple meanings and therefore multiple POS. The job of a POS tagger is to resolve this ambiguity accurately based on the context of use.

\$For Example

POS Tag Ambiguity

In English : I bank ${ }_{1}$ on the bank $_{2}$ on the river bank ${ }_{3}$ for my transactions.

Bank $_{1}$ is verb, the other two banks are noun

- Words often have more than one POS: back
- The back door $=\mathrm{JJ}$
- On my back = NN
- Win the voters back $=\mathrm{RB}$
- Promised to back the bill = VB
b. State difference between open vs. closed classes.

ANSWERHIB

Open class (CONTENT/LEXICAL)

$>$ Lexical words deal with content and vocabulary.
$>$ They have concrete meaning that goes beyond their function in a sentence.
> These words refer to things, people, actions, descriptions, or other ideas that have more than just a grammatical usage.

Closed class (Grammatical/Function)

$>$ Grammatical words deal with the formation of sentences.
$>$ They have ambiguous meaning and serve to express grammatical relationships with other words within a sentence.
$>$ They signal the structural relationships that words have to one another and are the glue that holds sentences together.
$>$ Thus, they serve as important elements to the structure of sentences.
c. Apply Viterbi Algorithm on the below given bigram and lexical probabilities;

Initial Probabilities						
Noun	$1 \backslash 3$					
Verb	0					
Other	$1 \backslash 3$					
Noun	$1 \backslash 4$					
Verb	$1 \backslash 4$					
Other	$1 \backslash 3$		Noun			
:---	:---	:---	:---			

Lexical Probabilities						
	O1=time	O2=flies	O3=like	O4=an	O5=arrow	
Noun	$1 \backslash 5$	$1 \backslash 5$	0	0	$1 \backslash 5$	
Verb	$1 \backslash 5$	$2 \backslash 5$	$1 \backslash 5$	0	0	
Other	0	0	$1 \backslash 5$	$2 \backslash 5$	0	

ANSWERHIC

hi	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
noun	$1 / 3 \times 1 / 5=1 / 15$	$1 / 5 \times 1 / 4 \times 1 / 15=1 / 300$	$0 \times 1 / 150=0$	0	$1 / 5 \times 1 / 4 \times 1 / 16$ 875
verb	0	$2 / 5 \times 1 / 4 \times 1 / 15=1 / 150$	$1 / 5 \times 1 / 4 \times 1 / 150=1 / 3000$	0	0
other	0	0	$1 / 5 \times 1 / 3 \times 1 / 150=1 / 2250$	$1 / 3 \times 2 / 5 \times 1 / 2250=1 / 16875$	0
	time $=$ noun	flies $=$ verb	like $=$ other	an=other	arrow=noun

Question No. 2:
Apply Bayesian theorem over the below given string:
\wedge John got many NLP books. ^He found them all very interesting.
Where for lexical probabilities assume John $=0.5$, got $=0.3$, many $=0.2, N L P=0.1$ and books $=0$.

ANSWIERH2

POS Tags:

^N V A N N. ^ N V N ARA.

Recording Numbers:

	$\boldsymbol{\wedge}$	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	\mathbf{l}
$\boldsymbol{\wedge}$	0	2	0	0	0	0
\mathbf{N}	0	1	2	1	0	1
\mathbf{V}	0	1	0	1	0	0
\mathbf{A}	0	1	0	0	1	1
\mathbf{R}	0	0	0	1	0	0
\boldsymbol{P}	1	0	0	0	0	0

Bigram Probability:

```
Bigram Probability= P(x|y)=P(a.b)/P(a)
```

	$\boldsymbol{\wedge}$	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	\mathbf{l}
$\boldsymbol{\wedge}$	0	1	0	0	0	0
\mathbf{N}	0	$1 / 5$	$2 / 5$	$1 / 5$	0	$1 / 5$
\mathbf{V}	0	$1 / 2$	0	$1 / 2$	0	0
\mathbf{A}	0	$1 / 3$	0	0	$1 / 3$	$1 / 3$
\mathbf{R}	0	0	0	1	0	0
\boldsymbol{l}	1	0	0	0	0	0

Now putting all the values in Bayes theorem i.e.
$P(T)=P(W / T)=T T P(T i-/ T i-1) x P(W i / T i)$
Where lexical probability is given i.e.
John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.
Good Luck ©

