Name:
Muhammad Bilal Elahi Id: 15434
Department: Computer Science Submitted to: Sir Muhammad Amin

Full Adder

AIM:

Design and verify the logic circuit of Half-subtractor using logic gate. OBJECTIVES:

- \quad To understand the principle of binary addition.
- \quad To understand full adder concept.
- Use truth table and Boolean Algebra theorems in simplifying a circuit design.
- - To implement full adder circuit using logic gates.

PROCEDURE:

- Collect the components necessary to accomplish this experiment.
- - Plug the IC chip into the breadboard
- - Connect the supply voltage and ground lines to the chips. PIN7 = Ground and PIN14 $=+5 \mathrm{~V}$.
- - According to the pin diagram of each IC mentioned above, make the connections according to circuit diagram.
- - Connect the inputs of the gate to the input switches of the LED.
- - Connect the output of the gate to the output LEDs.
- - Once all connections have been done, turn on the power switch of the breadboard
- - Operate the switches and fill in the truth table (Write "1" if LED is ON and "0" if LED is OFF.
- - Apply the various combination of inputs according to the truth table and observe the condition of Output LEDs.

Full Adder:

Full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carry value, which are both binary digits. It can be combined with other full adders or work on its own.

Observation Table:

A	B	Carry-in	Sum (S)	Carry- Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Results and Analysis:

Verified the truth table as follows.
Full Adder: Verified the truth table of Full Adder as $S=1$ i.e. LED which is connected to S terminal glows when inputs are $\mathrm{A}, \mathrm{B}, \mathrm{Ci}$ Verified the truth table of Full Adder as $\mathrm{Co}=1$ i.e. LED which is connected to Co terminal glows when inputs are A, B, Co.

CONCLUSION:

- - To add two bits, we require one XOR gate (IC 7486) to generate Sum and one AND (IC 7408) to generate carry.
- - To add three bits, we require two half adders.

