## Iqra National University

## Final Term Paper (Online)

Subject Name: Applied Physics
Class: BS SE-1, CS-1
Instructor: M Khalid Hamid


Id = $12994 \quad$ Name= Shabban Khan
Note: Attempt all questions in your own handwriting and then send it only through university portal.
Q1: A slit of width $\alpha$ is illuminated by white light.
a. For what value of $\alpha$ will the first minimum for red light of wavelength $\lambda=650 \mathrm{~nm}$ appear at $\theta=$ $15^{\circ}$ ?
b. What is the wavelength $\lambda^{\prime}$ of the light whose first side diffraction maximum is at $15^{\circ}$, thus coinciding with the first minimum for the red light?

Ans:


Q2:
a. What is the difference between reflection and refraction?
b. Explain the difference among angle of incident, angle of reflection and angle of refraction with the help of formulae and a single diagram?

Ans Part A


Part B


Q3: The long solenoid S shown (in cross section) in the following diagram has 220 turns $/ \mathrm{cm}$ and carries a current $i=1.5 \mathrm{~A}$; its diameter D is 3.2 cm . At its center we place a 130-turn closely packed coil C of diameter $\mathrm{d}=2.1 \mathrm{~cm}$. The current in the solenoid is reduced to zero at a steady rate in 25 ms . What is the magnitude of the emf that is induced in coil C while the current in the solenoid is changing?


A coil C is located inside a solenoid S , which carries current $i$.

Ans:


Qu:
a. How to calculate the magnetic force on current carrying wire?
b. A straight, horizontal length of copper wire has a current $\mathrm{i}=28 \mathrm{~A}$ through it. What are the magnitude and direction of the minimum magnetic field $B$ needed to suspend the wire, that is, balance the gravitational force on it? The linear density (mass per unit length) of the wire is 46.6 $\mathrm{g} / \mathrm{m}$.

Ans:



Part B


Q5:
a. What is the difference between Resistance and Resistivity?
b. A rectangular block of iron has dimensions $1.2 \mathrm{~cm} \times 1.2 \mathrm{~cm} \times 15 \mathrm{~cm}$. A potential difference is to be applied to the block between parallel sides and in such a way that those sides are equipotential surfaces as shown in the following diagram. What is the resistance of the block if the two parallel sides are
(1) the square ends (with dimensions $1.2 \mathrm{~cm} \times 1.2 \mathrm{~cm}$ )
(2) two rectangular sides (with dimensions $1.2 \mathrm{~cm} \times 15 \mathrm{~cm}$ )?


Ans:
ร
-n Pont "a"
Resistaree
Definition:-
Resistance is t The
phesical peroperty \& a substanes becaus of which it opposes The flow of current
proportiond.ly
Resistance is
dinictly proportionel to The The cenft and temperatus white it is inversely propent to Th eross sersecha area of th mateial.

Symble.
forme $=R=v / 1$

Resistivity
Definha:property of Resistivity is phis substance which is having particula dimensions.
Propertiontitys:
Resistivity is only
The propotial to the nature material. Sysmble.
formal :-

$$
P=(R \times A) / C
$$

Part B


