# ID : 14103 <br> SUBJECT : STATISTICS <br> INSTRUCTOR : SIR RAZA <br> DEPARTMENT : MSMC ( 6 $^{\text {TH }}$ SEMESTER) 

## FINAL TERM PAPER

Saturday, June 27

## Question No: 01

Find averages (A.M, G.M, H.M) of the following table (s) also justify their logical relationships.
a.

| Number of children <br> per family | Number of families |
| :---: | :---: |
| 1 | 4 |
| 2 | 13 |
| 3 | 9 |
| 4 | 4 |
| 5 | 1 |

b.

| marks | frequency |
| :---: | :---: |
| $0-9$ | 2 |
| $10-19$ | 31 |
| $20-29$ | 73 |
| $30-39$ | 85 |
| $40-49$ | 28 |

Solution:

Q1 (a)

Number of Number children Per of familial

| family $x$ | $f$ | $f . x$ | $f \cdot \log x$ |
| :---: | :---: | :--- | :--- |$\quad F / x$.

Arithematic Mean

$$
\begin{aligned}
A \cdot M=\frac{\sum f x}{\sum f} & =\frac{78}{31} \\
A \cdot M & =2 \cdot 37516
\end{aligned}
$$

Geometric Mean

$$
\begin{aligned}
& G \cdot M=\text { Antilog }\left(\frac{\sum(F \log x)}{\sum F}\right) \\
& G \cdot M=\text { Antilog }\left(\frac{11.314}{31}\right) \\
& G \cdot M=\text { Antilog }(0.365) \\
& G \cdot M=2.317
\end{aligned}
$$

HORMDNIC MEAN

$$
\begin{array}{r}
H \cdot M=\frac{\sum f}{\sum(f / x)} \\
H \cdot M=\frac{31}{14 \cdot 7}
\end{array}
$$

$$
H \cdot M=2.1088
$$

Logic relationship of A.M, G.M, H.M

$$
\begin{aligned}
& A \cdot M \geqslant G \cdot M \geqslant H \cdot M \\
& 2.516>2.317>2.1088
\end{aligned}
$$

logicd Relationship of A.M, G.M \& H.M Justified.


Arthmatic Mean:

$$
A_{m}=\frac{\sum(f m)}{\sum f}
$$

From the above data $\Sigma\left(f_{m}\right)=\frac{6425}{219}$

$$
A \cdot M=29.34
$$

Gematric Mean

$$
\begin{gathered}
G \cdot M=\text { Antilog }\left(\frac{\sum(f \times \log m)}{\sum f}\right) \\
G \cdot M=\text { Anti } \log \left(\frac{315.586}{219}\right) \\
G \cdot M=\text { Anti } \log (1.441)^{2} \\
G \cdot M=27.607
\end{gathered}
$$

Hormonic Mean

$$
\begin{array}{r}
H \cdot M=\frac{\sum f}{\sum(f / m)} \\
H \cdot M=\frac{219}{8.655} \\
H \cdot M=\frac{219}{8.655}
\end{array}
$$

$$
25.303
$$

logical relationship of A.M.GM,H.M

$$
A M \geq G M \geq H M
$$

## Question No: 02

Find Median \& Mode of the following tables
a.

| Number of children <br> per family | Number of families |
| :---: | :---: |
| 1 | 4 |
| 2 | 13 |
| 3 | 9 |
| 4 | 4 |
| 5 | 1 |

b.

| marks | frequency |
| :---: | :---: |
| $0-9$ | 2 |
| $10-19$ | 31 |
| $20-29$ | 73 |
| $30-39$ | 85 |
| $40-49$ | 28 |

Solution:
(5)
Q. 2
(a)

| $x$ | $f$ | $c \cdot f$ |
| :---: | :---: | :---: |
| 1 | 4 | 4 |
| 2 | 13 | 17 |
| 3 | 9 | 26 |
| 4 | 4 | 30 |
| 5 | 1 | 31 |

$\frac{5 \mid 1}{|l|}$
$n=\sum f=31$
$n$ is odd.
Median is the central value Position of central value $=\frac{n+1}{2}=\frac{31+1}{2}$ $=16^{\text {th }}$ term.

From the label above it is clear that $16^{\text {th }}$ term is 2 . Therfore, $[$ median $=2$ ].

Mode:
from The Mode is the most frequent the highest frequency of 13 is 2 .

Therfore;

$$
\text { Mode }=2
$$

Q. 2 (b)

| Class |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| interval | $F$ |  | Boundries | CF |
| Mid-Point |  |  |  |  |
| $0-9$ | 2 | $-0.5-9.5$ | 2 | 4.5 |
| $10-19$ | 31 | $95-19.5$ | 33 | 14.5 |
| $20-29$ | 73 | $f_{6}$ | $195-29.5$ | 106 |
| $30-39$ | 85 | $F_{1}$ | $29.5-39.5$ | 191 |
| $40-49$ | 28 | $F_{2}$ | $39.5-49.5$ | 219 |

Median \& mode lies there.

$$
\begin{aligned}
& \text { Median } \\
& \left(\frac{n+1}{2}\right)^{\text {in }} \text { term } \\
& \left(\frac{219+1}{2}\right)^{\text {th }} \text { term } \\
& \left(\frac{220}{2}\right)^{\text {th }} \text { term }
\end{aligned}
$$

OR

$$
\frac{219}{2} \text { th term }
$$

$$
109.5^{\text {th }} \text { term }
$$

$$
\begin{aligned}
& 12 \\
& 110 \text { th term } \\
& \text { Median }=L+\frac{h}{f}\left(\frac{\varepsilon f}{2}-c\right)^{f=29.5, h=10} \begin{array}{c}
f=85 \\
C=106 \\
k f=219
\end{array} \\
& \text { Median }=29.5+\frac{10}{85}\left(\frac{219}{2}-106\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Median }=29.5+0.1176(35) \\
& \text { Median }=29.5+0.4118 \\
& \text { Median } \approx 30 \\
& L_{1}=29.5 \quad F_{1}=85 \\
& 2=10 \quad F_{2}=28 \\
& f 0=73 \\
& \text { Mode }=L_{1}+\left(\frac{F_{1}-F_{0}}{2 f 1-F_{0}-F_{2}}\right) ; \\
& \text { Mode }=29.5+\left(\frac{85-73}{2(85-73-28)}\right) \times 10 \\
& \text { Mode }=29+\left(\frac{12}{69} \times 10\right) \\
& \text { Mode }=29+1.739 \\
& \text { Mode }=30.74
\end{aligned}
$$

## Question No: 03

a. Find Semi Quartile Range \& Semi Inter Quartile Range of Q2(a)
b. Find Variance and Co-efficient of variance of Q2(a)

Solution :

Q $=3 \ldots$ (a)
Finding Semi Quratile Range of Q. 2 E Semi Inter Quartile Range of Q.2


Formula for. Inter Quratile divialen Range= $Q_{3}-Q_{2}$
First Finding the quratile values

Finding $Q_{1}$ value
Formula

$$
\begin{aligned}
& Q_{1}=\left(\frac{N+1}{4}\right) \\
& =\frac{31+1}{4}=\frac{32}{4}=8
\end{aligned}
$$

QI $=8$, the value of 8 exists in the second class ie 2.

So, the Quratile 1. 12

Finding Q.3 Value,

$$
Q_{3}=3\left(\frac{N+1}{4}\right)=\left(\frac{32}{4}\right)=\frac{24^{\text {th }}}{\text { value }}
$$

If recheck the value of 24 in the of table, the location tracks fo

$$
Q_{3}=3
$$

Now Finding the semi Quartile range of $Q_{2}$

$$
\text { Formula, } \frac{Q_{3}-Q_{1}}{2}=\frac{3-1}{2}=\frac{2}{7}
$$

The semi, Inter Quartile R. of $Q_{2}$ is, 1

Finding semi Quaratile range of $Q_{2}$
calculated as,

$$
\frac{Q_{3}+Q_{1}}{2}
$$

$$
\text { Mid or S.Q. Range }=\frac{3+1}{2}=\frac{4}{z^{2}}=2
$$

The Interquiatile range means where the $50 \%$ the data is located in the table. is class (2)
Q. 3 (b)

Finding the varience and coefficient of the varience

| $X$ | $F$ |  |
| :--- | :--- | :--- |
| 1 | 4 |  |
| 2 | 13 | To find the variation of dispersion |
| 3 | 9 | First we re to calculate |
| 4 | 4 | the general value. |
| 5 | 1 | Range = Max - Min | Hence, the maximum value is 5 and the manimum is 1

$$
R=5-1 \Rightarrow 4
$$

Calculating the varience so the data given

$$
\begin{aligned}
& \text { St. Devotion }-f=\sum f\left(\frac{x_{i}-x}{\sum F}\right)^{2} \\
& f=\sqrt{\frac{\sum f\left(x_{i}-\bar{x}\right)^{2}}{\sum F}}
\end{aligned}
$$



$$
x_{2}=\frac{\sum F n}{\sum F}
$$

$$
=\frac{88}{31} \quad J=2.83 \quad \frac{\sum f\left(\frac{x-x}{\sum f}\right)^{2}}{\sum f}
$$

Putting the values $=8 \cdot \sqrt{\frac{52.544}{31}}$

$$
\text { Variance }=1.694
$$

To find the efficient we have to find the standard devision first.

$$
\begin{aligned}
& S . D=\sqrt{\text { varionce }} \\
& =\frac{\sqrt{52.5441}}{31}=\sqrt{1.694}
\end{aligned}
$$

Standard devialion $=1.301$
And finding co.effient of varialion,
Formulds,

$$
\begin{aligned}
& C . V=\frac{\text { Standard devialition }}{\text { Mean }} \times 100 \\
& C . V=\frac{1.301}{2.516} \times 100
\end{aligned}
$$

Ceffient of variation $=51.70 \%$

РTO....

## Question No: 04

Write down the short notes on the followings:

- Range
- Quartile Range
- Semi Inter Quartile Range
- Variance
- Standard Deviation
- Coefficient of Variation


## Solution :

## Range:

In statistics, the range is a measure of spread: it's the difference between the highest value and the lowest value in a data set.
Range is pretty simple when it comes to statistics. I will further explain this with the help of an example.
For instance, we are given the following data
$13,19,30,15,19,32,17,28,33,19,30,34$
Therefore to fine the range we subtract maximum value from the minimum value to find the range. The largest value is denoted by "Xm", and smallest value by "Xo" (Xnot)
So in my set od data my maximum is 34 , and my minimum value is 13 . So when I subtract these two I get a value of 21 .

## Range= Xm - Xo de

34-13=21 (Range) Hence, 21 is the range for my data

## Quartile Range:

Quartiles in statistics are values that divide your data into quarters. However, quartiles aren't shaped like pizza slices; Instead they divide your data into four segments according to where the numbers fall on the number line. The four quarters that divide a data set into quartiles are:

The lowest $25 \%$ of numbers.
The next lowest $25 \%$ of numbers (up to the median).
The second highest $25 \%$ of numbers (above the median).
The highest $25 \%$ of numbers.

Quartile rang by is a measure of statistical dispersion being equal to the difference between $75^{\text {th }}$ and $25^{\text {th }}$ percentile. It is also called mid spread or H -spread.

## Semi-interquartile range

The semi-interquartile range is half of the difference between the upper quartile and the lower quartile.
The semi-interquartile range is a measure of spread or dispersion. It is computed as one half the difference between the $75^{\text {th }}$ percentile [often called (Q3)] and the $25^{\text {th }}$ percentile (Q1). The formula for semi-interquartile range is therefore: $(\mathrm{Q} 3-\mathrm{Q} 1) / 2$.

## Variance:

Variance in statistics is a measurement of the spread between numbers in a data set. That is, it measures how far each number in the set is from the mean and therefore from every other number in the set.
Variance is calculated by taking the differences between each number in the data set and the mean, then squaring the differences to make them positive, and finally dividing the sum of the squares by the number of values in the data set.


## Standard Division :

The standard deviation is a statistic that measures the dispersion of a dataset relative to its mean and is calculated as the square root of the variance. It is calculated as the square root of variance by determining the variation between each data point relative to the mean. If the data points are further from the mean, there is a higher deviation within the data set; thus, the more spread out the data, the higher the standard deviation.

Standard deviation is a statistical measurement in finance that, when applied to the annual rate of return of an investment, sheds light on the historical volatility of that investment. The greater the standard deviation of securities, the greater the variance between each price and the mean, which shows a larger price range. For example, a volatile stock has a high standard deviation, while the deviation of a stable blue-chip stock is usually rather low.

## Formula for Standard Devisision



## Coefficient of Variation:

The coefficient of variation (CV) is the ratio of the standard deviation to the mean. The higher the coefficient of variation, the greater the level of dispersion around the mean. It is generally expressed as a percentage. Without units, it allows for comparison between distributions of values whose scales of measurement are not comparable.

When we are presented with estimated values, the CV relates the standard deviation of the estimate to the value of this estimate. The lower the value of the coefficient of variation, the more precise the estimate.

End.

