Name	Kaleem Ullah khan		
ID	7681		
Sec	<i>C</i>		
Dep	civil engineering		
Subject	Probibility & statistics		
Assignment	Mid term		
Semester	8 th		
Submitted to	Anwar shamim		

Question
$$N_{0}$$
 1:
Solution: (Grouped frequency Distribution)
largest value = 10
Smallest value = 0
Range = 10-0 = \$10
We decide to take 5 classes of equal
 $h = \frac{9}{5} = \frac{2}{1000}$ Gry 2.1
 $h = 2.1$
Class class frequency
 $ueight)$ boundaries point Tally Frequency
 $-2 - 0.05 - 2.05 \pm 1$ NU NU NU NU 1 31

(weight)	bounelasties	Point	Tally	Frequency
0-2	-0.05 - 2.05	1	MUL MAL 111	13
2.1-4.1	2.05 - 4.015	3.1	LAT LAT WAT LAT I	21
4.2 - 6.2	4.15 - 6.25	5.2	WH IIII	9
6.3 - 8.3	6.25 - 8.35	8.3	LHAT	Б
8.4 - 10.4	0.35-10.45	9.4	1)	2
Total	· · · ·			50

Un group Exoquency distribution.					
Number of Childern	Tally	frequency	C. frequency.		
0 1 2 3 4 5 6 7 8 9 10	וווו איז נאון איז נאון איז גאון איז גער גער גער גער גער גער גער גער	1 4 8 14 7 5 4 3 2 1	1 5 13 27 34 39 43 46 48 46 48 49 50		
Total		50			

Crowped factories distribution.
Mode:

$$M = t + \frac{f_m - f_1}{e^{(f_m - f_1) + (f_m - f_2)} \times h}$$

$$d = 2.05$$

$$f_m = 21$$

$$f_1 = 13$$

$$f_2 = 9$$

$$h = 2.1$$

$$M = 2.05 + \frac{(21 - 13)}{(21 - 13) + (21 - 9)} \times 21$$

$$M = 2.89 \approx 3$$

$$M = 2.89 \approx 3$$

Meelian.

6

$$\frac{n}{2} = \frac{50}{2} = 25$$

So

$$l = 2.05$$

 $h = 2.1$
 $f = 21$
 $c = 13$

Meelian:

$$\begin{array}{r} l+\frac{h}{f}\left(\frac{h}{a}-c\right) \\ = 2.05+\frac{2.1}{a1}\left(\frac{50}{a}-13\right) \\ = 3.25 \approx 3. \end{array}$$
Median = 3.

6 Ongrouped facturery distribution. Mode : In Ungrouped date the highest frequency. is 14 so the number of childerns in front of 14 is 3 tus Mode = 3 Meelian: Our data is even as it is so 50 Median = n = 50 = 25

An allow I Q03 002:-Calculate Quartile and decile (1) a ra Class x 13 a nu 12 1-5 2-4 of 13 16 5-9 6-8 9-13 6 10-12 22 Pro 14-16 13-17 32 10 18-20 17-21 37 5 (2) 40 22 - 24 21-25 3 45 5 26-28 25-29 30-32 29-33 3 48 34-36 33-37 50 2 Thy 5=50 an do To Te (3) a In

2 8 Quartiles:- $Q_1 = \frac{m}{4} = \frac{50}{4} = 12.5$ (1) 12-5 lies in 5-9 class boundary $Q_1 = l + \frac{h}{7} \left(\frac{n}{4} - c \right)$ $=5+\frac{4}{13}\left(\frac{50}{4}-3\right)$ (2) = 5 + .30(12.5-3)= 5 + .30(9.5)= 7.85 $Q_2 = \frac{2n}{4} = 2 \frac{2x50}{4} = 25$ 18.3 25 lies in 13-17 class boundary $\frac{s_0}{Q_2} = l + \frac{h}{f} \left(\frac{2n}{4} - c \right)$ = 13 + 4 (2×50 - 22) male.

3 $= \frac{13+4}{10} \left(25-22 \right)$ = 13 + 4 (3)= 13 + 1.2 $0_2 = 14.2$ DI $0_3 = \frac{3m}{4} = \frac{3\times50}{4} = \frac{3\times50}{4} = \frac{37\cdot5}{4}$ 37.5 lies in 21-25 class boundary $O_3 = l + \frac{h}{4} \left(\frac{3h}{4} - c \right)$ $= 21 + \frac{4}{3} \left(\frac{3 \times 50}{4} - 37 \right)$ = 21 + 4 (37.5 - 37) $= 21 + \frac{4}{3}(0.5) = 21 + 0.67$ 03 - 21.67

4 Deciles $D_1 = \frac{n}{10} = \frac{10}{10} = \frac{10}{10} = \frac{10}{10}$ 4 lies in 5-9 class boundary Hence Hence $D_{1} = l + h (-h - c)$ = 5 + 4 (-50 - 3) = 3 + 4 (-3)= 5 + 4 (5-3)13 (5-3) = 5+4 (2) = 5+0.61 $D_1 = \Gamma.61$ $D_{\lambda} = \frac{2n}{10} \Longrightarrow \frac{2\times 50}{10} \Longrightarrow 10$ 10 lies in 5-9Hence $D_2 = l + h (2n - c)$ T = 10

5 $D_2 = 5 + \frac{4}{13} \left(\frac{2 \times 50}{10} - 3 \right)$ D_2 $D_2 = 5 + \frac{4}{13} (10 - 3)$ $D_2 = 5 + \frac{4}{13}(7)$ Dy 20 $D_2 = 5 + 2.15$ D2 = 7.15 He $D_3 = \frac{3n}{10} \Rightarrow \frac{3x50}{10} = 15$ 15 lies in 5-9 class boundaryHence $D_3 = l + h \left(\frac{3n}{10} - c \right)$ $D_3 = 5 + \frac{4}{13} \left(\frac{3 \times 50}{10} - 3 \right)$ $D_3 = 5+ \frac{4}{13} (15-3)$ $D_3 = 5 \neq 0.307(12)$

6 8 $D_3 = 5 + 3.69$ D3 = 8.69 Dy = 4n => 4x50 =>20 10 10 =>20 20 fier in 9-13 class boundary Hence $D_{4} = l + h \left(\frac{4n}{10} - c\right)$ $\overline{D_{4}} = 9 + \frac{4}{6} \left(\frac{20}{10} - 16\right)$ $D_4 = q + \frac{4}{6} (4)$ $D_4 = 9 + 2.67$ Dy = 11.67 $D_{5} = \frac{5n}{10} = 25$ (0) = 25 25 lies in 13-17 class boundary

Hence Dr = 1th (Sn - C $D_{5} = 13 + \frac{4}{10} \left(\frac{5 \times 50}{10} - 22 \right)$ $= 13 + \frac{4}{10} (2F - 22)$ $= \frac{13 + 4}{10} (3)$ $D_{5} = 14.2$ $D_6 = \frac{6n}{10} = \frac{6\times50}{10} = 30$ 30 lies in 13-17 class boundary Hence = 13 + 4 (8)13+3-2 $D_6 = 16.2$

 $D_7 = \frac{7n}{10} \Rightarrow \frac{7\times50}{10} = 35$ 35 fies in 17-21 class boundaryHonce $D_{7} = l + \frac{1}{10} \left(\frac{7u}{10} - c \right)$ $D_{7} = 17 + \frac{4}{5} \left(\frac{7x50}{10} - 32 \right)$ $D_7 = 17 + \frac{4}{5} (35 - 32)$ $17 + \frac{9}{5}(3)$ = 17+2.9 D7 = 19.4 $D_8 = 8n = 8 \times 50 = 740$ 40 lies in 21-25 class boundary Hence $D_8 = l + h \left(\frac{8n}{10} - c \right)$

 $= 21 + \frac{4}{3} \left(\frac{8 \times 50}{10} - \frac{37}{37} \right)$ $= 21 + \frac{4}{3} (40 - 37)$ $= 21 + \frac{4}{2}(3)$ = 21+4 $D_8 = 25$ $D_q = \frac{q_n}{10} = 2 \frac{q \times 50}{10} = 2 \frac{450}{10} = 45$ 45 lies in 25-29 class boundary Hence $D_q = l + h \left(\frac{q_n}{p} - c \right)$ $Dq = 25 + \frac{4}{5} \left(\frac{9 \times 50}{10} - 40 \right)$ Dq = 25+4 (45-40) Dq = 25 + 4 (5)

10 Dq = 25+4Dq = 29Ans 45 ry

Question No: 3

Define the following.

(a)

Random Statistics

The fields of mathematics, probability, and statistics use formal definitions of randomness. In statistics, a random variable is an assignment of a numerical value to each possible outcome of an event space .This association facilitates the identification and the calculation of probabilities of the events.

(b)

Inferential Statistics:

- Inferential Statistics is a branch of statistics through which we collect the data, analysis the data, summarize the data, interpretate the data and tabulate the data to get precise result in non-numerical form. OR
- The process of reaching generalizations about the whole by examining a portion is called inferential statistics.

OR

• By using inferential statistics we draw inference about the characteristics of related problem and our inference gives non-numerical results.

(c)

Descriptive statistics

can be defined as:

- The collection of data, analysis of data, summarization of data, interpretation of data, tabulation of data at last we get a precise result in numerical form is called descriptive statistics OR
- Descriptive statistics is concerned with the summarization and describing a body of data OR
- Descriptive statistics is that branch of statistics which deals with concepts and methods concerned with summarization and description of important aspect of numerical data.

(d)

Sources of Primary Data:

- i. Direct personal investigation.
- ii. Indirect investigation
- iii. Interview method
- iv. Collection through Enumerators.
- v. Questioner method
- vi. Collection through local sources
- vii. Computer interview method

(e)

Nominal Scale:

It can be define as "the classification of the observation into mutually exclusive qualitative classes is said to be nominal scale"

E.g:

- i. Students are classified as male and female. We may use number 1 and 2.
- ii. Rainfall may be classified as heavy, moderate and light.We may use number 1,2, and 3

The numbers when they are used, only identify the categories. In this scale no particular order is used.