NAME: AMIT SINGH

ID: 15478

SUBJECT: DIGITAL LOGIC DESIGN

SEMESTER: 3RD
PROGRAMME: BS (SOFTWARE ENGINEERING)

FULL ADDER

AIM: Design and verify the logic circuit of Half-subtractor using logic gate.

OBJECTIVES: • To understand the principle of binary addition. • To understand full adder concept. • Use truth table and Boolean Algebra theorems in simplifying a circuit design. - To implement full adder circuit using logic gates.

PROCEDURE: - Collect the components necessary to accomplish this experiment. • Plug the IC chip into the breadboard • Connect the supply voltage and ground lines to the chips. PIN7 $=$ Ground and PIN14 $=+5 \mathrm{~V}$. \bullet According to the pin diagram of each IC mentioned above, make the connections according to circuit diagram. - Connect the inputs of the gate to the input switches of the LED. - Connect the output of the gate to the output LEDs. - Once all connections have been done, turn on the power switch of the breadboard - Operate the switches and fill in the truth table (Write "1" if LED is ON and " 0 " if LED is OFF. • Apply the various combination of inputs according to the truth table and observe the condition of Output LEDs.

FULL ADDER: Full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carry value, which are both binary digits. It can be combined with other full adders or work on its own.

OBSERVATION TABLE:

A	B	Carry-in	Sum (S)	Carry- Out	A	
0	0	0	0	0	0	
0	0	1	1	0	0	
0	1	0	1	0	0	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	0	1	0	0	1	1
1	1	0	0	1		

RESULTS AND ANALYSIS: Verified the truth table as follows. Full Adder: Verified the truth table of Full Adder as $\mathrm{S}=1$ i.e. LED which is connected to S terminal glows when inputs are $A, B, C i$ Verified the truth table of Full Adder as $\mathrm{Co}=1$ i.e. LED which is connected to Co terminal glows when inputs are A, B, Co.

CONCLUSION: • To add two bits, we require one XOR gate (IC 7486) to generate Sum and one AND (IC 7408) to generate carry. - To add three bits, we require two half adders.

