TRANSPORTATION PLANNING AND MANAGEMENT

Engineer M.Majid Naeem

Submitted by:
Muhammad Saad Khan
Registration \# 15215
MS Transportation Engineering.

QUESTION NO. 1

PLANNING:

> Planning is a activity that examines the potential of future actions to guide a situation or system toward a desired direction" Occurs in present but is oriented towards the future Goals:
> In Transportation it relates the operation of the highway system, geometry of road and traffic operation facilities to achieve the desired goals: like
$>$ To meet the mobility needs of the population
> To provide enhanced economic development opportunities

SCOPE OF TRANSPORTATION PLANNING:

$>$ All man-made projects should start with a plan.
> The more significant the project, the more intensive and long term the planning
> For large transportation projects, planning starts 20 years before construction.

FUNDAMENTAL ASSUMPTIONS IN TRANSPORTATION PLANNING:

$>$ Travel patterns are tangible, stable and predictable.
> Movement demands are directly related to the distribution, and intensity of land use, which is capable of being accurately determined for some future date.

ADDITIONAL ASSUMPTIONS:

> Decisive relationship exists between all modes of transport and that the future role of a particular mode cannot be determined without giving consideration to all other modes.
> The transportation system influences the development of an area, as well as serving that area.
> Area of continuous urbanization require a region-wide consideration of transport situation.
> The transportation study is an integral part of the overall planning process, and cannot adequately be considered in isolation.
$>$ The planning process is continuous, and require continuous updating, validating and amendment.

SHORT \& MEDIUM TERM TRANSPORTATION PLANNING (S\&M):

> Making existing system efficient.
> Short range transportation needs.
> To increase efficiency:

- Efficient use of existing road space.
- Reduce vehicle use in congested area.
- Improve transit service.
- Improve internal management service.
> Planning with short range objectives based upon studies with limited scope and local orientation.
> Evaluation Criteria can be accidents, travel time etc.

STRATEGIC TRANSPORTATION PLANNING:

> Capital intensive improvement

- Major S\&M synonymous to small strategic plan
- Recycling of S\&M during long time possible
> New facilities.
$>$ Major changes in existing facilities.
$>$ Long range policy actions.
> Future land development policies, adding highway link, bus transit system.
> Travel demand forecasting play an important role

TRAFFIC VOLUME COUNTS:

> Number of vehicles passing a point.
> May be comprehensive counts covering the entire main road system in an area.
> Counts on all roads intersecting a cordon line which encircles a particular area.
> Counts on screen line(s) which divide a city into two or more parts.
$>$ Counts at specific points.
$>$ The information sought

- Traffic volume and the direction.
- Volume of turning traffic at intersections.
- Hourly, daily, and seasonal variations of traffic
o Proportion of cars, trucks and buses.

ORIGIN \& DESTINATION SURVEYS:

$>$ Traffic counts give the amount of traffic passing specified points on the road but they do not indicate where traffic desires to travel, i.e. Its origin and its destination.
$>$ The survey is primarily for transportation planning, particularly the location, design, and programming of new or improved highways, public transport, and parking facilities.
$>$ An origin and destination survey may range from a relatively simple study to determine the amount of traffic that would by-pass a town to a comprehensive transportation survey for planning and design of the transportation system in a large metropolitan area.
> Methods include:
$>$ Recording registration numbers
> Handing postcards to drivers
> Roadside interviews
> Tag-on-vehicle surveys
$>$ Home interview surveys

SPEED STUDIES:

$>$ Using a radar meter, which gives a direct reading of speed.
$>$ Taking photographs of a section of road at a predetermined time interval and measuring the distance
$>$ Results may be presented in tables, graphs and diagrams.
> These may include

- Speed distribution and cumulative frequency distribution curves.
- The mean speed (TMS \& SMS)
- The $85^{\text {th }}$ percentile Speed

TRAVEL TIME AND DELAY STUDIES:

$>$ Travel time measures the average journey time and journey speed on sections

- Used in traffic assignment
- Quality of the traffic route
- Before and after effect of traffic engineering techniques
> Delay study
- By analyzing the delays, the location and cause of the congestion can be identified and remedied.

PARKING STUDIES:

> Carried out to

- Assist in cordon counts
- the number and location of existing parking spaces, both kerbside and offstreet;
- existing parking practices, including usage of available spaces, parking duration, illegal parking;
- the need to impose or vary parking time limits or to install parking meters;
- The adequacy of existing enforcement measures.
- For larger cities, a comprehensive parking demand study is required
> It includes the determination of parking usage, parking habits as well as the origin, destination and purpose of trip of drivers parking in the area.
$>$ It is used primarily in determining the demand for parking space by evaluating the individual parker's desires.
> The actual survey is carried out in the form of questionnaire cards or direct interviews.

OTHER TRAFFIC STUDIES:

$>$ Turning movement counts
> Vehicle delay studies
> Saturation flow rate
> Queue lengths
$>$ Gap study
> Vehicle occupancy study
> Commercial vehicle survey
> Trip generation study.

QUESTION NO. 2

BASIC ACTIVITIES IN TRANSPORTATION PLANNING:

> Collect travel information.
$>$ Identify existing system performance levels.
$>$ Estimate future travel demand.
$>$ Forecast future system performance levels.
> Identify different alternative solutions.
Main focus: meet existing and forecast travel demand.

STUDY AREA:

$>$ Clearly define the area under consideration.
> May be country.
> May be regional.
$>$ Metropolitan area.
$>$ Overall impact to major street/highway network.
$>$ Local.
> Divide study area into study zones, Travel Analysis Zones.
$>$ Homogenous urban activities (generate same types of trips).
$>$ Residential.
$>$ Commercial.
$>$ Industrial.

TRAVEL ANALYSIS ZONES:

> May be as small as one city block or as large as 10 sq. miles.
$>$ Natural boundaries i-e major roads, rivers, airport boundaries.
> Sized so only 10-15\% of trips are intrazonal.
> Links: sections of roadway (or railway).
$>$ Nodes: intersection.
$>$ Centroids: center of travel analysis zone.
> Centroid connectors: centroid to roadway network where trips load onto the network.

FOUR STEPS OF CONVENTIONAL TRANSPORTATION MODELING:

> Trip Generation

Decision to travel for a specific purpose (eat lunch etc.)

> Trip Distribution

Choice of destination (a particular restaurant, the nearest restaurant)

Mode Choice

Choice of travel mode (bike/ by car/ by public transport)

> Network Assignment

Choice of route or path

TRIP GENERATION:

> Calculate number of trips generated/ produced in each zone.
$>$ Calculate number of trips attracted to each zone.
$>$ Number of trips that begin from or end in each travel analysis zone,
> Trips for a typical day.
$>$ Trips are produced or attracted.
$>$ number of trips is a function of:

- TAZs land use activities
- Socioeconomic characteristics of TAZ
- Population
> 3 measurable variables influencing trip production and attraction
- Density of land use
- Social and socioeconomic characters of users
- Location

> Trip purpose

- Zonal trip making estimated separately by trip purpose
- School trips
- Work trips
- Shopping trips
- Social/ Recreational trips

> Travel behavior depends on trip purpose

- School \& work - regular (time of day)
- Recreational \& shopping - highly irregular
- Forecast \# of trips that produced or attracted by each TAZ for a "typical" day
- Forecast - function of other variables
- Attraction
- Number and types of retail facilities
- Number of employees
- Land use
- Production
- Car ownership
- Income
- Population (employment characteristics)

TRIP PURPOSE:

- Trips are estimated by purpose (categories)
- Travel behavior of trip-makers depends somewhat on trip purpose
- Work trips
- regular
- Often during peak periods.
- Usually same origin/destination.
- School trips
- Regular.
- Same origin/destination.
- Shopping recreational
- Highly variable by origin and destination, number, and time of day.

HOUSEHOLD BASES:

- Trips based on "households" rather than individual.
- Individual too complex.
- Theory assumes households with similar characteristics have similar trip making characteristics.
- However Concept of what constitutes a "household".
- Changed dramatically outside Pakistan
- What in Pakistan?

TRIP DISTRIBUTION:

- Predicts where trips go from each TAZ
- Determines trips between pairs of zones
- trips from TAZ i going to TAZ j
- Function of attractiveness of TAZ j
- Size of TAZ j
- Distance to TAZ j
\checkmark If 2 malls are similar (in the same trip purpose), travelers will tend to go to closest
- Different methods but gravity model is most popular.

MODE CHOICE/SPLIT:

- In most situations, a traveler has a choice of modes.
- Transit, walk, bike, carpool, motorcycle, drive alone.
- Mode choice determines \# of trips between zones made by auto or other mode, usually transit.

Q: 3

Solution:

Land Use Category		Area(ha)						
		Zone 1	Zone2	zone3	zone4	zone5	Zone6	Zone7
Residential		$\begin{aligned} & 7740 * 128 \\ & =990720 \end{aligned}$	$\begin{aligned} & 24900 * 108 \\ & =2689200 \end{aligned}$	$\begin{aligned} & 17064 * 93 \\ & =1586952 \end{aligned}$	$\begin{aligned} & 40204 * 75 \\ & =3015300 \end{aligned}$	$\begin{aligned} & 29317 * 55 \\ & =1612435 \end{aligned}$	$\begin{aligned} & 576416 * 45= \\ & 25938720 \end{aligned}$	$\begin{aligned} & 53445 * 38= \\ & 2030910 \end{aligned}$
Commer cial	Retai 1	$\begin{aligned} & 6972 * 850 \\ & =5926200 \end{aligned}$	$\begin{aligned} & 5688 * 423= \\ & 2406024 \end{aligned}$	$\begin{aligned} & 26220 * 563 \\ & =14761860 \end{aligned}$	$\begin{aligned} & 6172 * 670= \\ & 4135240 \end{aligned}$	$\begin{aligned} & 126091 * 463= \\ & 58380133 \end{aligned}$	$\begin{aligned} & 15270 * 485= \\ & 7405950 \end{aligned}$	$\begin{aligned} & 1290 * 380= \\ & 490200 \end{aligned}$
	Whol esale	$\begin{aligned} & 14940 * 13 \\ & =2016900 \end{aligned}$	$\begin{aligned} & 10744 * 90= \\ & 966960 \end{aligned}$	$\begin{aligned} & 20976 * 115 \\ & =2412240 \end{aligned}$	$\begin{aligned} & 7715 * 73= \\ & 563195 \end{aligned}$	$\begin{aligned} & 90065 * 60= \\ & 5403900 \end{aligned}$	$\begin{aligned} & 7635 * 48=3664 \\ & 80 \end{aligned}$	$\begin{aligned} & 1935 * 40= \\ & 77400 \end{aligned}$
	Servi ces	$\begin{aligned} & 5976 * 445 \\ & =2659320 \end{aligned}$	$\begin{aligned} & 2528 * 258= \\ & 652224 \end{aligned}$	$\begin{aligned} & 1748 * 505= \\ & 882740 \end{aligned}$	$\begin{aligned} & 6172 * 385= \\ & 2376220 \end{aligned}$	$\begin{aligned} & 162117 * 365= \\ & 59172705 \end{aligned}$	$\begin{aligned} & 10180 * 338= \\ & 3440840 \end{aligned}$	$\begin{aligned} & 1720 * 328= \\ & 564160 \end{aligned}$
Manufacturing		$\begin{aligned} & 1290 * 353 \\ & =455370 \end{aligned}$	$\begin{aligned} & 4980 * 183= \\ & 911340 \end{aligned}$	$\begin{aligned} & 1264 * 83= \\ & 104912 \end{aligned}$	$\begin{aligned} & 1748 * 73= \\ & 127604 \end{aligned}$	$\begin{aligned} & 4629 * 55= \\ & 254595 \end{aligned}$	$\begin{aligned} & 36026 * 53= \\ & 1909378 \end{aligned}$	$\begin{aligned} & 12725 * 35= \\ & 445375 \end{aligned}$
Transportation		$\begin{aligned} & 1935 * 73 \\ & =141255 \end{aligned}$	$\begin{aligned} & 8964 * 25= \\ & 224100 \end{aligned}$	$\begin{aligned} & 5688 * 35= \\ & 199080 \end{aligned}$	$\begin{aligned} & 5244 * 25= \\ & 131100 \end{aligned}$	$4629 * 13=60177$	$\begin{aligned} & 90065 * 18= \\ & 1621170 \end{aligned}$	$\begin{aligned} & 10180 * 15= \\ & 152700 \end{aligned}$
Public Buildings		$\begin{aligned} & 2580 * 595 \\ & =1535100 \end{aligned}$	$\begin{aligned} & 9960 * 265= \\ & 2639400 \end{aligned}$	$\begin{aligned} & 4424 * 375= \\ & 1659000 \end{aligned}$	$\begin{aligned} & 6992 * 245= \\ & 1713040 \end{aligned}$	$\begin{aligned} & 3086 * 90= \\ & 277740 \end{aligned}$	$\begin{aligned} & 252182 * 48= \\ & 12104736 \end{aligned}$	$\begin{aligned} & 30540 * 10= \\ & 305400 \end{aligned}$
Public open space		$\begin{aligned} & 3010 * 5 \\ & =15050 \end{aligned}$	$\begin{aligned} & 22908 * 3 \\ & =68724 \end{aligned}$	$\begin{aligned} & 15800 * 10 \\ & =158000 \end{aligned}$	$\begin{aligned} & 71668 * 5 \\ & =358340 \end{aligned}$	$\begin{aligned} & 92580 * 5 \\ & =462900 \end{aligned}$	$\begin{aligned} & 468338 * 3 \\ & =1405014 \end{aligned}$	$\begin{aligned} & 114525 * 3= \\ & 343575 \end{aligned}$

Calculations:

Using table-2 as reference;

Zone 1:
Total trips generated $=13739915$
Productions=990720
Attractions=12749195
Zone 2:
Total trips generated $=10557972$
Productions $=2689200$
Attractions=7868772
Zone 3:
Total trips generated $=21764784$
Productions=1586952
Attractions=20177832
Zone 4:
Total trips generated $=12420039$
Productions=3015300
Attractions=9404739
Zone 5:
Total trips generated $=125624585$
Productions $=1612435$
Attractions $=124012150$
Zone 6:
Total trips generated $=54192288$

Productions $=25938720$
Attractions $=28253568$

Zone 7:
Total trips generated $=4409720$
Productions $=2030910$
Attractions=2378810
Grand Total trips generated in all 7-zones=242709303
Grand Total productions in all 7 -zones $=37864237$
Grand Total attractions in all 7-zones=204845066.

