

 Iqra National University Peshawar Pakistan

Department of Computer Science

Spring Semester, Mid-Assignment, April 2020

Subject: TSE Issue Date: 20/April/2020

Program: MS (CS) Submission Date: 30/April/2020

Teacher Name: Dr. Fazal-e-Malik

Student Name Rooh Ullah Jan ID 6611

Q.1 a) what is GUI testing?

GUI TESTING is a software testing type that checks the Graphical User Interface

of the Application Under Test. GUI testing involves checking the screens with the

controls like menus, buttons, icons, and all types of bars - toolbar, menu bar, dialog

boxes, and windows, etc. The purpose of Graphical User Interface (GUI) Testing is

to ensure UI functionality works as per the specification. A user does not see the

source code. The interface is visible to the user. Especially the focus is on the

design structure, images that they are working properly or not.

https://cdn.guru99.com/images/3-2016/032216_0738_CompleteGui2.png
https://cdn.guru99.com/images/3-2016/032216_0738_CompleteGui2.png

 GUI Testing Tools are the tools used for verifying and validating the graphical

user interface of the software application, for its cosmetic appearance, functional

and non-functional properties of the application. The testing life cycle and defect

life cycle are similar to any other type of testing methods applied on the software

applications. Some of the widely used GUI Testing tools in the software industries

are SWTBot, Selenium, Test Studio, TestComplete, TestPartner, QF-Test, RCP

Testing Tool, Telerik, Tellurium, Watir, coded UI, cucumber, Smartbear LoadUI,

QAliber, GTT, IcuTest, Test Anywhere, Test Studio, RIATest, SilkTest,

CubicTest, Ranorex, CrossBrowserTesting, Abbot Java GUI Test Framework,

AutoIt UI Testing, eggplant UI Automation Testing, FitNesse, etc.

b) Study open source Tools available to conduct GUI Testing and write notes on
only two tools.

There are many tools use for GUI Testing. Two of them are given below.

1. Selenium

 Selenium is one of the most common and widely used Testing tools for

functional and UI testing.

 It supports parallel Testing on various web browsers like Chrome, Mozilla

Firefox, IE, Safari, etc.

 Test scripts for GUI Testing in Selenium can be written in various languages

like Python, Java, C#, etc.

 It provides the special facility of record and play which is very helpful while

performing the UI tests.

 Executing the test scripts in Selenium assures Synchronization. As the UI

Testing is asynchronous but while using Selenium for Automation

https://www.educba.com/benefits-of-automation-testing/

Testing ensures that the execution is moved to the next page once the current

page is loaded properly.

 It allows adding the verifications through assertions for which inbuilt

functions are available in Selenium.

2. TestingWhiz

TestingWhiz is a test automation tool with the code-less scripting by Cygnet

Infotech, a CMMi Level 3 IT solutions provider. TestingWhiz tool’s Enterprise

edition offers a complete package of various automated testing solutions like web

testing, software testing, database testing, API testing, mobile app testing,

regression test suite maintenance, optimization, and automation, and cross-browser

testing.

TestingWhiz offers various important features like:

 Keyword-driven, data-driven testing, and distributed testing

 Browser Extension Testing

 Object Eye Internal Recorder

 SMTP Integration

 Integration with bug tracking tools like Jira, Mantis, TFS and FogBugz

 Integration with test management tools like HP Quality Center, Zephyr,

TestRail, and Microsoft VSTS

 Centralized Object Repository

 Version Control System Integration

 Customized Recording Rule.

Q.2 a) what is usability Testing?

Usability testing is a technique used in user-centered interaction design to evaluate

a product by testing it on users. This can be seen as an
irreplaceable usability practice, since it gives direct input on how real users use the

system.

https://www.educba.com/benefits-of-automation-testing/
https://www.cygnet-infotech.com/
https://www.cygnet-infotech.com/
https://dzone.com/articles/12-great-web-service-testing-tools

Also it is refers to evaluating a product or service by testing it with representative

users. Typically, during a test, participants will try to complete typical tasks while

observers watch, listen and takes notes. The goal is to identify any usability

problems, collect qualitative and quantitative data and determine the participant's

satisfaction with the product.

Usability is a delicate thing. Designers have to find creative ways to combine what

they think is best with the user’s perception of what is best. That touches on

everything in the product: from visuals like the color scheme, to the navigation and

interactions. But how can you understand what another individual prefers? Well –

you gotta ask them.

The idea is that you get a representative group of users and see what is best in their

opinion. Granted, simply ―asking‖ may be simplifying it. It does involve a whole

process of research and planning before you even get to the actual testing.

A usability test is the act of putting a prototype of your product in front of a user

and carrying out an interview. This usually goes with a set of activities or tasks that

participants are asked to do with the prototype.

b) Study usability test tools available to conduct Usability Test and write notes
on only two tools.

1. UserZoom

UserZoom is a huge name in the usability testing tools market. It’s no surprise,

really. Reaching the top of the game seems like a natural thing for a tool that offers

537% return on investment. Yes, there is an actual study carried out by Forrester

Research with UserZoom that found some incredible statistics.

But when it comes to features and functionality: UserZoom offers the option to use

your own participants in studies or making use of their advanced search engine –

which has about 120 million possible participants. Reviews left by users of the

platform praise it for the quick feedback and ability to carry out several studies in

fast succession.

A cool aspect of this platform is that you can customize the plan so it includes only

the add-ons you need for your project or company – such as the audience search

engine.

 Who is it for: startups and small/medium businesses.

http://info.userzoom.com/a-forrester-study-the-total-economic-impact-of-userzoom.html
http://info.userzoom.com/a-forrester-study-the-total-economic-impact-of-userzoom.html
https://www.userzoom.com/

 Price: available upon request

2. UsabilityHub

UsabilityHub is one of the usability testing tools on this list that aims for

simplicity.

One of their features, for example, is simplicity in itself: participants are shown a

page for 5 seconds. Afterwards, they are asked what they remember about the page

– all answers are listed. In the end, users have a word cloud with the things

participants found most memorable. This helps designers adjust the design to make

a lasting impression.

Among the features of UsabilityHub that we love is their advanced heat maps, that

go beyond simply marking of click-density. This platform actually gives

information and data along with the heat map, such as time-to-click.

Like other usability testing tools, it gives users the option to draw from the

participant database or recruit their own participants. For users who bring in their

own participants, there is no limit of how many people can take part in the study. If

you prefer to rely on their participant database, you’ll be able to list out specific

demographics that interest you.

 Who is it for: startups, small and medium businesses

 Pricing: plans vary from 79$/month to 396$/month

Q.3 a) what is clean room software engineering?

Clean Room Software Engineering:

The cleanroom software engineering process is a software development process

intended to produce software with a certifiable level of reliability also Cleanroom

software engineering is a process for developing high-quality software with

certified reliability. Originally developed by Harlan Mills, the "cleanroom" name

was borrowed from the electronics industry, where clean rooms help prevent defect

during fabrication. In that sense, cleanroom software engineering focuses on defect

https://usabilityhub.com/

prevention, rather than defect removal, and formal verification of a program's

correctness. The Cleanroom Reference Model provides guidelines for defining

development teams and project roles, most importantly, the distinction between

testers and developers. Having testing and development in the same group is a

conflict of interest, while splitting them into separate groups allows for natural

competition to push the project toward higher quality results.

Cleanroom differs from other formal methods in that it doesn't require

mathematically defined requirements—those stated in plain English are adequate.

These requirements are divided into tagged statements for traceability. The process

of tagging requirements in small verifiable statements allows for tracing and

verification of each requirement throughout the process. Moreover, since attempts

to document requirements are likely to have errors, inconsistencies, and omissions,

Cleanroom refines many of these through the "Box Structure Development

Method," a process that treats software as a set of communicating state machines

that separate behavioral and implementation concerns.

To illustrate the Cleanroom development process, I'll present a GUI that eliminates

individual Save and Quit features. The project requirements are split between an

abstract GUI and data-editing requirements. Partitioning the tagged requirements

along lines of "separation of concerns" is the first step toward discovery of natural

divisions in the software architecture.The source code implementation of this GUI.

b) Study some case studies in cleanroom software engineering and write
summaries of some case studies.

Study of some case study are given below.

CASE STUDY OVERVIEW:

Experimental Software Engineering is needed to enable transfer of research results

from the universities to industrial use. It is mostly not possible to take research

results and apply them in a large experiment directly. Therefore, the technology

transfer must be carried out in a number of steps: minor case study within a

university environment, an enlarged experiment in industry and finally into real

projects as the normal method or technique to use.

This case study focuses on reporting some results from the first step in the

dissemination process. A comparative study between two development methods is

reported. The two methods are: object-based Cleanroom and Object-Oriented

Software Engineering. The study shows that the object-based Cleanroom produces

higher quality software with approximately the same effort as the more widely

spread method. The results are, due to the small study, not statistical significant,

but they are promising for the future and they ought to encourage industry to

perform a larger experiment in an industrial setting. Both quantitative and

qualitative results are presented.

Introduction:

The transfer of new technology from research to practical application is difficult.

New ideas and methods cannot be incorporated into existing software processes

due to lack of evidence in their ability to improve cost and quality. Therefore,

experimental software engineering is needed. This can be done in several ways,

either by performing experiments in real projects or in laboratories. Both of these

approaches have their drawbacks, in the first case it might be too expensive to

experiment in a real environment and in the second case it might be hard to draw

general conclusions from a limited experiment. This paper presents a limited

experiment performed within a university environment. The objective is to get

indications, which could form the basis for deciding whether or not to continue

with a larger experiment or pilot project in an industrial setting.

Brief introduction to the two methods

Brief introduction to Object-Oriented Software Engineering:

As stated in [Jacobson92] Object-Oriented Software Engineering (OOSE) is an

object-oriented process for developing large scale software systems. The process

takes a global view of the system development and focuses on minimizing the life

cycle cost of a system. An essential part of the method is the concept of use cases.

A use case specifies a flow of actions that a specific actor invokes in the system.

For example a description of a normal telephone call between two users is a typical

use case. OOSE consists of three processes: analysis, construction and testing. In

the work five different models are produced. During the analysis process the

requirements model and the analysis model are produced. The result of the

construction process is the design model and the implementation model. Finally,

the testing results in the test model.

The Analysis process – Here the constructor builds a picture of the system to be

created. The requirements and the analysis models are produced in this process

(see figure 1).

The requirements model – This model endeavors capturing the functional demands

of the system, and hence all functionality expected in the system is specified here.

The model contains three different parts: a use case model, an interface description

and a problem domain model. In the use case model the functionality is described

as use cases using natural language. The use case model is also the spine of the

Construction and the Testing processes. The analysis model – This model focuses

on giving the system a robust and easy to change object structure. The

requirements model is the input to this part of the Analysis process, i.e. where the

object structure of the system is laid. The Construction process – Both the

requirements and the analysis models are inputs to this process. The design and the

implementation models are produced in this process. Therefore, the result of this

process is a complete system (see figure 2).

The design model – In the design model the object structure is adjusted to

represent the implementation environment. The analysis model has been developed

under idealistic conditions and must now be adjusted to the circumstances

prevailing. Any changes in the design model that are of logical nature must be

updated in the analysis model. The types of objects used in this model are called

blocks. It is important to remember that the blocks are not the same type of objects

as those in the analysis model. An interaction diagram is developed for each use

case. It contains a detailed description of the different signals sent and received by

the different blocks.

The implementation model – This model is the actual implementation of the

system. It contains the source code. One does not necessarily have to use an object

oriented programming language, but it is preferable. The design model is the base

for the implementation. The Testing process – In the Testing process the

implementation model is tested, the test model is produced and a decision is taken

whether or not the system is ready for delivery. The test model – This model

endeavors verifying the system.

Brief introduction to object-based Clean room Object-Based Analysis and Design

(COBAD) [Cosmo94a, Cosmo94b] is an object based process for developing large

scale software systems. The process focuses on minimizing the life cycle cost of a

system by producing high reliability software. This is obtained by making the

correct thing from the beginning and by making extensive verifications of the

produced material early in the development. Each step in the development is

verified against the previous step. An essential part of the method is the concept of

Stimulus-Response Diagrams (SRD) [Cosmo94a], which is a formal definition of a

use case. An SRD specifies a flow of actions that a specific actor invokes in the

system. For example a description of a normal telephone call between two users is

a typical event that can be described in one SRD. Development in COBAD is done

through three processes: Specification and analysis, Design and implementation,

and Certification. The work results in a number of models. During the

Specification and analysis process, three models of the system are produced: the

use case model, the usage model and the object model. During the Design and

implementation process, five models are produced for each object: the interaction

model, the use case model, the usage model and the state box model and the

implementation model. Finally the Certification process results in the test model.

The names of the models are the same for some of the models in the Specification

and analysis process and the Design and implementation process, which is due to

that they describe the same aspects although on different system levels. The

Specification and analysis process – Here the constructor builds a picture of the

external behavior of the system. The use case model, the usage model and the

object model of the system are produced in this process. The use case model – This

model focuses on capturing the functional demands of the system, i.e. all

functionality expected in the system is specified here. The model contains three

parts: a scenario model, a black box model and an interface description. In the

black box model the functionality is based on use cases (or scenarios), using the

Black Box Description Language [Cosmo94a]. In this study the black box model is

not defined formally. In the interface description the actors of the system and the

interface of the system are described. The usage model – This model should

capture the usage of the system.

The model describes how the actors may use the system. Each possible sequence

of stimuli into the system (the alphabet of the system) must be specified. This can

be done as defined in [Runeson92] or in abstract grammar as it has been done in

the study. The usage model is the input to the certification model. The object

model – The first step in analyzing the requirements, to obtain the first internal

description of the system, is to construct an object model. The object model shows

the static data structure of the real-world system and organizes it into workable

pieces.

The object model describes real-world object classes and their relationships to each

other. The model focus is on the static structure as it is usually better defined, less

dependent on application details, more stable as the solution evolves and it is easier

for humans to understand.

The Design and implementation process – The three models from the Specification

and analysis process are input to this process. The interaction model, the use case

model of the objects, the usage model of the objects, the state box model and the

implementation model are produced. The result of this process is hence a complete

system. The interaction model - An interaction diagram is developed for each use

case. It contains a detailed description of the different signals sent and received by

the different blocks. In the model the responsibilities of the system are distributed

to objects in the object model. The use case model of the objects – In this model

the object structure is adjusted to represent the implementation environment and to

capture the functional demands of the object. The model contains three parts: a

scenario model, a black box model and an interface description. In the black box

model the functionality is described as use cases (or scenarios), using Black Box

Description Language.

The model is not defined formally within this study. In the interface description,

the actors of the object and the interface of the object are described. The usage

model of the objects – This model must capture the usage of each object of the

system. The model describes how the actors may use an object. This is described

using abstract grammar. The state box model – In this model the focus is on

distributing the responsibilities of the objects to data in the objects. The role of the

state box is to open up the black box model of the object one step by making its

data visible.

The implementation model – This model is the implementation of the system. It

contains the source code. In this study, SDL [CCITT88] was used as

implementation language. The state box model of each object is the base for the

implementation model.

The Certification process – The usage models produced for the system and the

objects are input to this process. These models are the basis for certifying the

implementation model. The test model is produced and a decision taken whether or

not the system is ready for delivery. The test model – This model documents the

verification of the system.

