Name :- M.Mamoon
I. 1 :- 7690

Sec i- C
Dept \quad - $B E$ (civil)
Assignment :- Mid term Paper
Subbmitted :- Engr. Aced Khan
Date :- 21.09-2020
Subject i- Structure Analysis II

Given Data:

Required Data:

$$
\begin{aligned}
& S \cdot F \cdot D=? \\
& B \cdot M \cdot D=\text { ? }
\end{aligned}
$$

Solution:

$$
S \cdot I=\gamma-3 n=5-3(1)=2^{\circ}
$$

$$
\begin{aligned}
& {[A R]=\left[\begin{array}{c}
A R_{1} \\
A R_{2}
\end{array}\right]} \\
& {[D R S]=\left[\begin{array}{l}
D R S_{1} \\
D R S_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Since No ratation/t displacement mentioned in question it vedundont location.

payy:
Pg\#OY Datc- -1

$$
\begin{aligned}
& D R L_{1}=w_{r_{2}} x_{2}+w_{c_{2}} \times c_{2} \\
& D R L_{1}=\frac{7200}{E I} \times 15+\frac{15000}{E I} \times 22.5 \\
& D R L_{1}=\quad 445500 / E I \\
& D R L_{2}=\omega r_{2}\left(x_{2}+24\right)+\omega_{c_{2}}\left(24+c_{2}\right)+\omega_{1}\left(x_{1}+12\right) \\
& B R L_{2}=\frac{7200}{E L}(15+24)+\frac{15000}{E I}(24+22 \cdot 5)+\frac{1440}{E I}(8+12) \\
& P R L_{2}=1007100 / E I \\
& {\left[D R L=\binom{D R L_{1}}{D R L_{2}}=\frac{1}{E I}\binom{445500}{1007100}^{-}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& w=\frac{1}{2} \times 30 x \\
& \omega=450 / \mathrm{FI}
\end{aligned}
$$

$$
\text { Moment arm }=\frac{2}{3}(20)=20
$$

$$
\Delta_{母}=f_{11}=\frac{450}{E I} \times 20
$$

$$
f_{11}=\frac{9000}{E I}
$$

$$
\Delta_{2}=f_{21}=\frac{450}{E I} \times(24+20)
$$

(b)

$$
\Delta \text { 四 }=f_{12}=\omega_{2} \times c_{2}=\frac{1170}{E I} \times 16.92
$$

$$
f_{12}=19800 / F I
$$

$$
\begin{aligned}
& \Delta_{2_{2}}=f_{22}=w_{1} \times x_{1}+w_{2} \times\left(c_{2}+24\right) \\
& f_{22}=52485 / E I
\end{aligned}
$$

Apply the compatibility equation:
$[A R]=\left[\begin{array}{ll}0.0006534 & -0.0002465 \\ -0.0002465 & 0.00011204\end{array}\right]\left[\begin{array}{c}-44500 \\ (-1007100\end{array}\right]$
$[A R]=\left[\begin{array}{cc}219.174 & k \\ -101.87 & k\end{array}\right]$
where $A R_{2}=-101.87 \mathrm{~K}$ slows that the choosen direction is incorrect and Thus, acts vertically upward.

Compute Member end actions:

\qquad
(a) Compute (AML].

80 K

Question:- 02
Ans:-
Force Method Displacement Method

$$
\rightarrow D_{s}<D_{k}
$$

\rightarrow Force are reduntent or unknows.
\rightarrow Start with equillibruim \rightarrow Start with compatible of force
\rightarrow Force found by computility equs of displacements.
\rightarrow No. of reduntants $=D_{s}$
\rightarrow Not suitable for compute
deformation.
\rightarrow Displacement found by equilibrium eqns of forces.
\rightarrow No. of Xeduntants $=D K$
\rightarrow Not suitable for truss.

Suggest which Method is more suitable for structure Analysis of matrix approach:-
stiffness Method also called Displacement Method is more suitable for structure anaylsis matrix approach, as it is primary method used in matrix analysis. The main advantages of this method over flexiblility method is. that it is conductive to computer programming. once the analytical model of structure has been defined. No further engineering decisions are required in the stiffness method in order to carry out the analysis.
ate:
I $\square \square \square \square \square$
Question:- 03

Sol:-
Total. statical indeterminacy

$$
\Rightarrow R-3=5-3=2^{\circ}
$$

Step:- 01
Identify Redundent Actions
\qquad

$$
\left[\begin{array}{l}
A R_{1} \\
A R_{2}
\end{array}\right]=\left[\begin{array}{l}
? \\
?
\end{array}\right],\left[\begin{array}{l}
D R_{1} \\
D R_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Date:

Step:-02
compute value of [DRL]

Stepio 3

Date:
\square
$\mathrm{Pg} \# / 6$
(b)

Fig: AMR victues (m_{2} valuei)

\Rightarrow For Finding values of ORL:-

$$
\begin{aligned}
& D R L_{1}=\int_{0}^{8} \frac{M_{A B} \cdot m_{1}(A B)+\int_{0}^{16} \frac{M_{B C}}{E I} \cdot m_{2}(B C)}{D R L_{1}=\int_{0}^{1} \frac{(5 x-40)(-16) d x}{E I}+\int_{0}^{16} \frac{0 \cdot x}{E(2 I)} d x} \\
& D R L_{1}=\frac{2560}{E I} \\
& D R L_{2}=\int_{0}^{8}(5 x-40)(8-x) d x+\int \frac{0.0}{E(2 I} d x \\
& D R L_{2}=\frac{-853.33}{E I}
\end{aligned}
$$

\Rightarrow Compute Flexibility Method:-

$$
F_{2 \times 2}-^{-2^{2}}=\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right]
$$

)ate:

$$
\begin{aligned}
& \text { Pg } 18 \\
& F_{11}=\int_{0}^{3} \frac{m_{1}^{2}(A B)}{E I}+\int_{0}^{16} \frac{m_{1}^{2} B C}{E I} \\
& F_{11}=\int_{0}^{3} \frac{(-16)^{2}}{E I} d x+\int_{0}^{16} \frac{x^{2}}{E(2 T)} d x \\
& F_{11}=\frac{2730.67}{E I} \\
& F_{12}=F_{21}=\int_{0}^{3} \frac{m_{1}(A B)}{E I}+\int_{0}^{16} \frac{m_{2}(B C)}{E I} \\
& F_{12}=F_{21}=\int_{0}^{8} \frac{(-16)(8-x)}{E I} d x+\int_{0}^{16} \frac{(x)(0)}{2 E I} d x \\
& F_{12}=F_{21}=\frac{-512}{E I} \\
& F_{22}=\int_{0}^{8} \frac{\left(m_{2}\right)^{2}(A B)}{E I} d x+\int_{0}^{16} \frac{\left(m_{2}\right)^{2}(B C)}{2 E I} d x \\
& F_{22}=\int_{0}^{1} \frac{(8-x)^{2} d x}{E I}+\int_{0}^{11} \frac{(0)^{2}}{\frac{2 E I}{2}} d x
\end{aligned}
$$

$$
F_{22}=170.67
$$

As we know that

$$
\begin{aligned}
& {[D R S]=[D R L]+[A R] \times[F]} \\
& \Rightarrow[A R]=[D R R]-R R L \\
& {[F]} \\
& {[A R]=[F]^{-1} \times[A B B S-D R L]} \\
& {[A R]=\left[\begin{array}{cc}
2730.67 & -512 \\
-512 & 170.67
\end{array}\right]^{-1} x} \\
& {\left[\begin{array}{l}
0-2560 \\
0+853.33
\end{array}\right]} \\
& {[A R]=\left[\begin{array}{c}
-0.0005 \\
4.997
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right]} \\
& {\left[\begin{array}{l}
A R_{1} \\
A R_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
5
\end{array}\right]}
\end{aligned}
$$

