
NAME : MIAN AHSAN JAN
ID# : 13213
SUBJECT : MODERN PROGRAMMING
LANGUAGE (LAB)
DATED : 18TH/SEP/2020

Chapter 3 3-1:

Names Store the names of a few of your friends in a list called names. Print each
person’s name by accessing each element in the list, one at a time.

names = ['ron', 'tyler', 'dani']

print(names[0])
print(names[1])
print(names[2])

Output:
Ron
Tyler
dani

3-2: Greetings Start with the list you used in Exercise 3-1, but instead of just printing
each person’s name, print a message to them. The text of each message should be
the same, but each message should be personalized with the person’s name.

names = ['ron', 'tyler', 'dani']

msg = "Hello, " + names[0].title() + "!"
print(msg)
msg = "Hello, " + names[1].title() + "!"
print(msg)
msg = "Hello, " + names[2].title() + "!"
print(msg)

Output: Hello, Ron! Hello, Tyler! Hello, Dani!

3-4: Guest List If you could invite anyone, living or deceased, to dinner, who would
you invite? Make a list that includes at least three people you’d like to invite to
dinner. Then use your list to print a message to each person, inviting them to dinner.

guests = ['guido van rossum', 'jack turner', 'lynn hill']

name = guests[0].title()
print(name + ", please come to dinner.")

name = guests[1].title()
print(name + ", please come to dinner.")

name = guests[2].title()
print(name + ", please come to dinner.")

Output: Guido Van Rossum, please come to dinner.
Jack Turner, please come to dinner.
Lynn Hill, please come to dinner.

3-5: Changing Guest List You just heard that one of your guests can’t make the
dinner, so you need to send out a new set of invitations. You’ll have to think of
someone else to invite.

Start with your program from Exercise 3-4. Add a print statement at the end of your
program stating the name of the guest who can’t make it. Modify your list,
replacing the name of the guest who can’t make it with the name of the new
person you are inviting. Print a second set of invitation messages, one for each
person who is still in your list.

Invite some people to dinner.
guests = ['guido van rossum', 'jack turner', 'lynn hill']

name = guests[0].title()
print(name + ", please come to dinner.")

name = guests[1].title()
print(name + ", please come to dinner.")

name = guests[2].title()
print(name + ", please come to dinner.")

name = guests[1].title()
print("\nSorry, " + name + " can't make it to dinner.")
Jack can't make it! Let's invite Gary instead.
del(guests[1])

guests.insert(1, 'gary snyder')

Print the invitations again.

name = guests[0].title()
print("\n" + name + ", please come to dinner.")

name = guests[1].title()
print(name + ", please come to dinner.")

name = guests[2].title()
print(name + ", please come to dinner.")

Output: Guido Van Rossum, please come to dinner.
Jack Turner, please come to dinner.
Lynn Hill, please come to dinner.

Sorry, Jack Turner can't make it to dinner.

Guido Van Rossum, please come to dinner.
Gary Snyder, please come to dinner.
Lynn Hill,please come to dinner

3-6: More Guests You just found a bigger dinner table, so now more space is
available. Think of three more guests to invite to dinner.

Start with your program from Exercise 3-4 or Exercise 3-5. Add a print statement to
the end of your program informing people that you found a bigger dinner table.

Use insert() to add one new guest to the beginning of your list.
Use insert() to add one new guest to the middle of your list.
Use append() to add one new guest to the end of your list. Print a new

set of invitation messages, one for each person in your list.

Invite some people to dinner.
guests = ['guido van rossum', 'jack turner', 'lynn hill']

name = guests[0].title()
print(name + ", please come to dinner.")

name = guests[1].title()
print(name + ", please come to dinner.")

name = guests[2].title()
print(name + ", please come to dinner.")

name = guests[1].title()
print("\nSorry, " + name + " can't make it to dinner.")

Jack can't make it! Let's invite Gary instead.
del(guests[1])
guests.insert(1, 'gary snyder')

Print the invitations again.

name = guests[0].title()
print("\n" + name + ", please come to dinner.")

name = guests[1].title()
print(name + ", please come to dinner.")

name = guests[2].title()
print(name + ", please come to dinner.")

We got a bigger table, so let's add some more people to the list.

print("\nWe got a bigger table!")
guests.insert(0, 'frida kahlo')
guests.insert(2, 'reinhold messner')
guests.append('elizabeth peratrovich')

name = guests[0].title()
print(name + ", please come to dinner.")

name = guests[1].title()
print(name + ", please come to dinner.")

name = guests[2].title()
print(name + ", please come to dinner.")

name = guests[3].title()
print(name + ", please come to dinner.")

name = guests[4].title()
print(name + ", please come to dinner.")

name = guests[5].title()
print(name + ", please come to dinner.")

Output: Guido Van Rossum, please come to dinner.
Jack Turner, please come to dinner.
Lynn Hill, please come to dinner.
Sorry, Jack Turner can't make it to dinner.
Guido Van Rossum, please come to dinner.
Gary Snyder, please come to dinner.
Lynn Hill, please come to dinner.

We got a bigger table!
Frida Kahlo, please come to dinner.

Guido Van Rossum, please come to dinner.
Reinhold Messner, please come to dinner.
Gary Snyder, please come to dinner.
Lynn Hill, please come to dinner.
Elizabeth Peratrovich, please come to dinner.

3-7: You just found out that your new dinner table won’t
arrive in time for the dinner, and you have space for only two guests.
• Start with your program from Exercise 3-6. Add a new line that prints a
message saying that you can invite only two people for dinner.
• Use pop() to remove guests from your list one at a time until only two
names remain in your list. Each time you pop a name from your list, print
a message to that person letting them know you’re sorry you can’t invite
them to dinner.
• Print a message to each of the two people still on your list, letting them
know they’re still invited.
• Use del to remove the last two names from your list, so you have an empty
list. Print your list to make sure you actually have an empty list at the end
of your program.
Solution:
list=['Doctor','Teacher','Engineer']
list.insert(0,'Businessman')
print(list)
list.insert(2,'Watchman')
print(list)
list.append('Gardener')
print(list)
line="I can invite only two people for Dinner."
print(line)
print(list[5] + " I am sorry, I can't invite you to Dinner.")
popped_list =list.pop()
print(list)
print(popped_list)
print(list[4] + " I am sorry, I can't invite you to Dinner.")
popped_list =list.pop()
print(list)
print(popped_list)
print(list[3] + " I am sorry, I can't invite you to Dinner.")
popped_list=list.pop()
print(list)
print(popped_list)
print(list[2] + " I am sorry, I can't invite you to Dinner.")
popped_list=list.pop()
print(list)
print(popped_list)
MSG=" I invite you " + list[0] + " to Dinner at 2:00PM in Peshawar Thanks." + "\n I
invite you " + list[1] + " to Dinner at 2:00PM in Peshawar Thanks."

print(MSG)
Output:
['Businessman', 'Doctor', 'Teacher', 'Engineer']
['Businessman', 'Doctor', 'Watchman', 'Teacher', 'Engineer']
['Businessman', 'Doctor', 'Watchman', 'Teacher', 'Engineer', 'Gardener']
I can invite only two people for Dinner.
Gardener I am sorry, I can't invite you to Dinner.
['Businessman', 'Doctor', 'Watchman', 'Teacher', 'Engineer']
Gardener
Engineer I am sorry, I can't invite you to Dinner.
['Businessman', 'Doctor', 'Watchman', 'Teacher']
Engineer
Teacher I am sorry, I can't invite you to Dinner.
['Businessman', 'Doctor', 'Watchman']
Teacher
Watchman I am sorry, I can't invite you to Dinner.
['Businessman', 'Doctor']
Watchman
I invite you Businessman to Dinner at 2:00PM in Peshawar Thanks.
I invite you Doctor to Dinner at 2:00PM in Peshawar Thanks.

Task 3-8: Think of at least five places in the world you’d like to
visit.
• Store the locations in a list. Make sure the list is not in alphabetical order.
• Print your list in its original order. Don’t worry about printing the list neatly,
just print it as a raw Python list.
• Use sorted() to print your list in alphabetical order without modifying the
actual list.
• Show that your list is still in its original order by printing it.
• Use sorted() to print your list in reverse alphabetical order without changing
the order of the original list.
• Show that your list is still in its original order by printing it again.
• Use reverse() to change the order of your list. Print the list to show that its
order has changed.
• Use reverse() to change the order of your list again. Print the list to show
it’s back to its original order.
• Use sort() to change your list so it’s stored in alphabetical order. Print the
list to show that its order has been changed.
• Use sort() to change your list so it’s stored in reverse alphabetical order.
Print the list to show that its order has changed.
Solution:
Places=['Japan','India','Pakistan','America']
print(Places)
print("\nHere is the sorted list.")
print(sorted(Places))
print("\nHere is the original list.")
print(Places)

print("\nHere is the sorted list.")
print(sorted(Places,reverse=True)
print("\nHere is the original list again.")
print(Places)
print("\nHere the list in reverse order.")
Places.reverse()
print(Places)
print("\nHere the list in reverse order again.")
Places.reverse()
print(Places)
print("\nHere is the sort list.")
Places.sort()
print(Places)
print("\nHere is the sort list in reverse.")
Places.sort(reverse=True)
print(Places)
Output:
['Japan', 'India', 'Pakistan', 'America']

Here is the sorted list.
['America', 'India', 'Japan', 'Pakistan']

Here is the original list.
['Japan', 'India', 'Pakistan', 'America']

Here is the sorted list.
['Pakistan', 'Japan', 'India', 'America']

Here is the original list again.
['Japan', 'India', 'Pakistan', 'America']

Here the list in reverse order.
['America', 'Pakistan', 'India', 'Japan']

Here the list in reverse order again.
['Japan', 'India', 'Pakistan', 'America']

Here is the sort list.
['America', 'India', 'Japan', 'Pakistan']

Here is the sort list in reverse.
['Pakistan', 'Japan', 'India', 'America']
Task 3-9: Working with one of the programs from Exercises 3-4
through 3-7 (page 46), use len() to print a message indicating the number
of people you are inviting to dinner.
Solution:
list=['Businessman', 'Doctor', 'Watchman', 'Teacher', 'Engineer', 'Gardener']

print(len(list))
msge="The number of people I invited to Dinner are " + str(len(list)) + "."
print(msge)
Output:
6
The number of people I invited to Dinner are 6.

Task 3-10: If you haven’t received an index error in one of your programs yet, try to
make one happen. Change an index in one of your Programs to produce an index
error. Make sure you correct the error before closing the program.
Solution:
list=['Businessman', 'Doctor', 'Watchman']
print(list[3])
Correction of error:
list=['Businessman', 'Doctor', 'Watchman']
print(list[2])
Output:
Traceback (most recent call last):

File "C:/Users/X61s/AppData/Local/Programs/Python/8.py", line 2, in <module>
print(list[3])

IndexError: list index out of range
Correction of error:
Watchman

Task 4-1:Think of at least three kinds of your favorite pizza. Store these
pizza names in a list, and then use a for loop to print the name of each pizza.
• Modify your for loop to print a sentence using the name of the pizza
instead of printing just the name of the pizza. For each pizza you should
have one line of output containing a simple statement like I like pepperoni
pizza.
• Add a line at the end of your program, outside the for loop, that states
how much you like pizza. The output should consist of three or more lines
about the kinds of pizza you like and then an additional sentence, such as
I really love pizza!
Solution:
Pizzas=[‘california’,’broadway’,’penny’]
for pizza in pizzas:

print(pizza)
msg=pizza.title() + " is very sweet."
print(msg)

print("I like to go to eat pizza with my friends.")
Output:
california
California is very sweet.
broadway

Broadway is very sweet.
penny
Penny is very sweet.
I like to go to eat pizza with my friends.
Task 4-2: Think of at least three different animals that have a common characteristic.
Store the names of these animals in a list, and then use a for loop to
print out the name of each animal.
• Modify your program to print a statement about each animal, such as
A dog would make a great pet.
• Add a line at the end of your program stating what these animals have in
common. You could print a sentence such as Any of these animals would
make a great pet!
Solution:
animals=['cow','goat','horse']
for animal in animals:

print(animal)
statement="It is known as the " + animals[0].title() + " is our Mother in India." +
"\nThe horn of the " + animals[1].title() + " is used to make spoons." + "\n" +
animals[2].title() + " is a very powerful animal."
print(statement)
print("All these animals have four legs, they eat grass and they give milk.")
Output:
cow
goat
horse
It is known as the Cow is our Mother in India.
The horn of the Goat is used to make spoons.
Horse is a very powerful animal.
All these animals have four legs, they eat grass and they give milk.
Task 4-3: Use a for loop to print the numbers from 1 to 20,
inclusive.
Solution:
for value in range(1,21):

print(value)
Output:
1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
Task 4-4: Make a list of the numbers from one to one million, and then
use a for loop to print the numbers. (If the output is taking too long, stop it by
pressing ctrl-C or by closing the output window.)
Solution:
numbers=list(range(1,1000000))
print(numbers)
Output:
Its output is too long.
Task 4-5: Make a list of the numbers from one to one million,
and then use min() and max() to make sure your list actually starts at one and
ends at one million. Also, use the sum() function to see how quickly Python can
add a million numbers.
Solution:
>>> numbers=list(range(1,1000001))
>>> min(numbers)
1
>>> max(numbers)
1000000
>>> sum(numbers)
500000500000
Task 4-6: Use the third argument of the range() function to make a list
of the odd numbers from 1 to 20. Use a for loop to print each number.
Solution:
odd_numbers=list(range(1,20,2))
for value in range(1,20,2):

odd_numbers.append(value+2)
print(odd_numbers)
Output:
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
Task 4-7: Make a list of the multiples of 3 from 3 to 30. Use a for loop to
print the numbers in your list.
Solution:
list=[]
for value in range(1,11):

list.append(value*3)
print(list)
Output:
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
Task 4-8: A number raised to the third power is called a cube. For example,

the cube of 2 is written as 2**3 in Python. Make a list of the first 10 cubes (that
is, the cube of each integer from 1 through 10), and use a for loop to print out
the value of each cube.
Solution:
cubes=[]
for value in range(1,11):

cubes.append(value**3)
print(cubes)
Output:
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
Task 4-9: Use a list comprehension to generate a list of the
first 10 cubes.
Solution:
cubes=[value**3 for value in range(1,11)]
print(cubes)
Output:
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

4-11: My Pizzas, Your Pizzas

Start with your program from Exercise 4-1 (page 60). Make a copy of the list of pizzas,
and call it friend_pizzas. Then, do the following:

 Add a new pizza to the original list.
 Add a different pizza to the list friend_pizzas.
 Prove that you have two separate lists. Print the message, My favorite pizzas

are:, and then use a for loop to print the first list. Print the message, My
friend’s favorite pizzas are:, and then use a for loop to print the second list.
Make sure each new pizza is stored in the appropriate list.

favorite_pizzas = ['pepperoni', 'hawaiian', 'veggie']
friend_pizzas = favorite_pizzas[:]

favorite_pizzas.append("meat lover's")
friend_pizzas.append('pesto')

print("My favorite pizzas are:")
for pizza in favorite_pizzas:

print("- " + pizza)

print("\nMy friend's favorite pizzas are:")
for pizza in friend_pizzas:

print("- " + pizza)

Output:

My favorite pizzas are:
- pepperoni

- hawaiian
- veggie
- meat lover's

My friend's favorite pizzas are:
- pepperoni
- hawaiian
- veggie
- pesto

6-1: Person

Use a dictionary to store information about a person you know. Store their first
name, last name, age, and the city in which they live. You should have keys such
as first_name, last_name, age, and city. Print each piece of information stored in
your dictionary.

person = {
'first_name': 'eric',
'last_name': 'matthes',
'age': 43,
'city': 'sitka',
}

print(person['first_name'])
print(person['last_name'])
print(person['age'])
print(person['city'])

Output:

eric
matthes
43
sitka

top

6-2: Favorite Numbers

Use a dictionary to store people’s favorite numbers. Think of five names, and use
them as keys in your dictionary. Think of a favorite number for each person, and
store each as a value in your dictionary. Print each person’s name and their favorite
number. For even more fun, poll a few friends and get some actual data for your
program.

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

favorite_numbers = {
'mandy': 42,
'micah': 23,
'gus': 7,
'hank': 1000000,
'maggie': 0,
}

num = favorite_numbers['mandy']
print("Mandy's favorite number is " + str(num) + ".")

num = favorite_numbers['micah']
print("Micah's favorite number is " + str(num) + ".")

num = favorite_numbers['gus']
print("Gus's favorite number is " + str(num) + ".")

num = favorite_numbers['hank']
print("Hank's favorite number is " + str(num) + ".")

num = favorite_numbers['maggie']
print("Maggie's favorite number is " + str(num) + ".")

Output:

Mandy's favorite number is 42.
Micah's favorite number is 23.
Gus's favorite number is 7.
Hank's favorite number is 1000000.
Maggie's favorite number is 0.

top

6-3: Glossary

A Python dictionary can be used to model an actual dictionary. However, to avoid
confusion, let’s call it a glossary.

 Think of five programming words you’ve learned about in the previous
chapters. Use these words as the keys in your glossary, and store their
meanings as values.

 Print each word and its meaning as neatly formatted output. You might print
the word followed by a colon and then its meaning, or print the word on one
line and then print its meaning indented on a second line. Use the newline
character ('\n') to insert a blank line between each word-meaning pair in your
output.

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

glossary = {
'string': 'A series of characters.',
'comment': 'A note in a program that the Python interpreter ignores.',
'list': 'A collection of items in a particular order.',
'loop': 'Work through a collection of items, one at a time.',
'dictionary': "A collection of key-value pairs.",
}

word = 'string'
print("\n" + word.title() + ": " + glossary[word])

word = 'comment'
print("\n" + word.title() + ": " + glossary[word])

word = 'list'
print("\n" + word.title() + ": " + glossary[word])

word = 'loop'
print("\n" + word.title() + ": " + glossary[word])

word = 'dictionary'
print("\n" + word.title() + ": " + glossary[word])

Output:

String: A series of characters.

Comment: A note in a program that the Python interpreter ignores.

List: A collection of items in a particular order.

Loop: Work through a collection of items, one at a time.

Dictionary: A collection of key-value pairs.

top

6-4: Glossary 2

Now that you know how to loop through a dictionary, clean up the code from
Exercise 6-3 (page 102) by replacing your series of print statements with a loop that
runs through the dictionary’s keys and values. When you’re sure that your loop
works, add five more Python terms to your glossary. When you run your program
again, these new words and meanings should automatically be included in the
output.

glossary = {

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

'string': 'A series of characters.',
'comment': 'A note in a program that the Python interpreter ignores.',
'list': 'A collection of items in a particular order.',
'loop': 'Work through a collection of items, one at a time.',
'dictionary': "A collection of key-value pairs.",
'key': 'The first item in a key-value pair in a dictionary.',
'value': 'An item associated with a key in a dictionary.',
'conditional test': 'A comparison between two values.',
'float': 'A numerical value with a decimal component.',
'boolean expression': 'An expression that evaluates to True or False.',
}

for word, definition in glossary.items():
print("\n" + word.title() + ": " + definition)

Output:

Dictionary: A collection of key-value pairs.

String: A series of characters.

Boolean Expression: An expression that evaluates to True or False.

Comment: A note in a program that the Python interpreter ignores.

Value: An item associated with a key in a dictionary.

Loop: Work through a collection of items, one at a time.

List: A collection of items in a particular order.

Conditional Test: A comparison between two values.

Key: The first item in a key-value pair in a dictionary.

Float: A numerical value with a decimal component.

top

6-5: Rivers

Make a dictionary containing three major rivers and the country each river runs
through. One key-value pair might be 'nile': 'egypt'.

 Use a loop to print a sentence about each river, such as The Nile runs through
Egypt.

 Use a loop to print the name of each river included in the dictionary.

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

 Use a loop to print the name of each country included in the dictionary.

rivers = {
'nile': 'egypt',
'mississippi': 'united states',
'fraser': 'canada',
'kuskokwim': 'alaska',
'yangtze': 'china',
}

for river, country in rivers.items():
print("The " + river.title() + " flows through " + country.title() + ".")

print("\nThe following rivers are included in this data set:")
for river in rivers.keys():

print("- " + river.title())

print("\nThe following countries are included in this data set:")
for country in rivers.values():

print("- " + country.title())

Output*:

The Mississippi flows through United States.
The Yangtze flows through China.
The Fraser flows through Canada.
The Nile flows through Egypt.
The Kuskokwim flows through Alaska.

The following rivers are included in this data set:
- Mississippi
- Yangtze
- Fraser
- Nile
- Kuskokwim

The following countries are included in this data set:
- United States
- China
- Canada
- Egypt
- Alaska

*Sometimes we like to think of Alaska as our own separate country.

top

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

6-6: Polling

Use the code in favorite_languages.py (page 104).

 Make a list of people who should take the favorite languages poll. Include
some names that are already in the dictionary and some that are not.

 Loop through the list of people who should take the poll. If they have already
taken the poll, print a message thanking them for responding. If they have
not yet taken the poll, print a message inviting them to take the poll.

favorite_languages = {
'jen': 'python',
'sarah': 'c',
'edward': 'ruby',
'phil': 'python',
}

for name, language in favorite_languages.items():
print(name.title() + "'s favorite language is " +

language.title() + ".")

print("\n")

coders = ['phil', 'josh', 'david', 'becca', 'sarah', 'matt', 'danielle']
for coder in coders:

if coder in favorite_languages.keys():
print("Thank you for taking the poll, " + coder.title() + "!")

else:
print(coder.title() + ", what's your favorite programming language?")

Output:

Jen's favorite language is Python.
Sarah's favorite language is C.
Phil's favorite language is Python.
Edward's favorite language is Ruby.

Thank you for taking the poll, Phil!
Josh, what's your favorite programming language?
David, what's your favorite programming language?
Becca, what's your favorite programming language?
Thank you for taking the poll, Sarah!
Matt, what's your favorite programming language?
Danielle, what's your favorite programming language?

top

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

6-7: People

Start with the program you wrote for Exercise 6-1 (page 102). Make two new
dictionaries representing different people, and store all three dictionaries in a list
called people. Loop through your list of people. As you loop through the list, print
everything you know about each person.

Make an empty list to store people in.
people = []

Define some people, and add them to the list.
person = {

'first_name': 'eric',
'last_name': 'matthes',
'age': 43,
'city': 'sitka',
}

people.append(person)

person = {
'first_name': 'ever',
'last_name': 'matthes',
'age': 5,
'city': 'sitka',
}

people.append(person)

person = {
'first_name': 'willie',
'last_name': 'matthes',
'age': 8,
'city': 'sitka',
}

people.append(person)

Display all of the information in the dictionary.
for person in people:

name = person['first_name'].title() + " " + person['last_name'].title()
age = str(person['age'])
city = person['city'].title()

print(name + ", of " + city + ", is " + age + " years old.")

Output:

Eric Matthes, of Sitka, is 43 years old.
Ever Matthes, of Sitka, is 5 years old.

Willie Matthes, of Sitka, is 8 years old.

top

6-8: Pets

Make several dictionaries, where the name of each dictionary is the name of a pet.
In each dictionary, include the kind of animal and the owner’s name. Store these
dictionaries in a list called pets. Next, loop through your list and as you do print
everything you know about each pet.

Note: When I decided to post solutions and wrote complete programs to solve each
exercise, I realized this problem was not as well phrased as it should have been. It
doesn’t really make sense to name each dictionary for the pet it describes; that
information should really be included in the dictionary, rather than being used as the
name of the dictionary. This solution reflects that approach.

Make an empty list to store the pets in.
pets = []

Make individual pets, and store each one in the list.
pet = {

'animal type': 'python',
'name': 'john',
'owner': 'guido',
'weight': 43,
'eats': 'bugs',

}
pets.append(pet)

pet = {
'animal type': 'chicken',
'name': 'clarence',
'owner': 'tiffany',
'weight': 2,
'eats': 'seeds',

}
pets.append(pet)

pet = {
'animal type': 'dog',
'name': 'peso',
'owner': 'eric',
'weight': 37,
'eats': 'shoes',

}
pets.append(pet)

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

Display information about each pet.
for pet in pets:

print("\nHere's what I know about " + pet['name'].title() + ":")
for key, value in pet.items():

print("\t" + key + ": " + str(value))

Output:

Here's what I know about John:
weight: 43
animal type: python
name: john
owner: guido
eats: bugs

Here's what I know about Clarence:
weight: 2
animal type: chicken
name: clarence
owner: tiffany
eats: seeds

Here's what I know about Peso:
weight: 37
animal type: dog
name: peso
owner: eric
eats: shoes

top

6-9: Favorite Places

Make a dictionary called favorite_places. Think of three names to use as keys in the
dictionary, and store one to three favorite places for each person. To make this
exericse a bit more interesting, ask some friends to name a few of their favorite
places. Loop through the dictionary, and print each person’s name and their favorite
places.

favorite_places = {
'eric': ['bear mountain', 'death valley', 'tierra del fuego'],
'erin': ['hawaii', 'iceland'],
'ever': ['mt. verstovia', 'the playground', 'south carolina']
}

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

for name, places in favorite_places.items():
print("\n" + name.title() + " likes the following places:")
for place in places:

print("- " + place.title())

Output:

Ever likes the following places:
- Mt. Verstovia
- The Playground
- South Carolina

Erin likes the following places:
- Hawaii
- Iceland

Eric likes the following places:
- Bear Mountain
- Death Valley
- Tierra Del Fuego

top

7-1: Rental Car

Write a program that asks the user what kind of rental car they would like.
Print a message about that car, such as “Let me see if I can find you a Subaru”.

car = input("What kind of car would you like? ")

print("Let me see if I can find you a " + car.title() + ".")

Output:

What kind of car would you like? Toyota Tacoma
Let me see if I can find you a Toyota Tacoma

7-2: Restaurant Seating

Write a program that asks the user how many people are in their dinner group.
If the answer is more than eight, print a message saying they’ll have to wait
for a table. Otherwise, report that their table is ready.

party_size = input("How many people are in your dinner party tonight? ")
party_size = int(party_size)

https://ehmatthes.github.io/pcc/solutions/chapter_6.html

if party_size > 8:
print("I'm sorry, you'll have to wait for a table.")

else:
print("Your table is ready.")

Output:

How many people are in your dinner party tonight? 12
I'm sorry, you'll have to wait for a table.

or:

How many people are in your dinner party tonight? 6
Your table is ready.

7-3: Multiples of Ten

Ask the user for a number, and then report whether the number is a multiple
of 10 or not.

number = input("Give me a number, please: ")
number = int(number)

if number % 10 == 0:
print(str(number) + " is a multiple of 10.")

else:
print(str(number) + " is not a multiple of 10.")

Output:

Give me a number, please: 23
23 is not a multiple of 10.

or:

Give me a number, please: 90
90 is a multiple of 10.

7-4: Pizza Toppings

Write a loop that prompts the user to enter a series of pizza toppings until
they enter a quit value. As they enter each topping, print a message saying
you’ll add that topping to their pizza.

prompt = "\nWhat topping would you like on your pizza?"
prompt += "\nEnter 'quit' when you are finished: "

while True:

topping = input(prompt)
if topping != 'quit':

print(" I'll add " + topping + " to your pizza.")
else:

break

Output:

What topping would you like on your pizza?
Enter 'quit' when you are finished: pepperoni

I'll add pepperoni to your pizza.

What topping would you like on your pizza?
Enter 'quit' when you are finished: sausage

I'll add sausage to your pizza.

What topping would you like on your pizza?
Enter 'quit' when you are finished: bacon

I'll add bacon to your pizza.

What topping would you like on your pizza?
Enter 'quit' when you are finished: quit

7-5: Movie Tickets

A movie theater charges different ticket prices depending on a person’s age. If
a person is under the age of 3, the ticket is free; if they are between 3 and 12,
the ticket is $10; and if they are over age 12, the ticket is $15. Write a loop in
which you ask users their age, and then tel them the cost of their movie ticket.

prompt = "How old are you?"
prompt += "\nEnter 'quit' when you are finished. "

while True:
age = input(prompt)
if age == 'quit':

break
age = int(age)

if age < 3:
print(" You get in free!")

elif age < 13:
print(" Your ticket is $10.")

else:
print(" Your ticket is $15.")

Output:

How old are you?
Enter 'quit' when you are finished. 2

You get in free!
How old are you?

Enter 'quit' when you are finished. 3
Your ticket is $10.

How old are you?
Enter 'quit' when you are finished. 12

Your ticket is $10.
How old are you?
Enter 'quit' when you are finished. 18

Your ticket is $15.
How old are you?
Enter 'quit' when you are finished. quit

7-8: Deli

Make a list called sandwich_orders and fill it with the names of various
sandwiches. Then make an empty list called finished_sandwiches. Loop through
the list of sandwich orders and print a message for each order, such as I made

your tuna sandwich. As each sandwich is made, move it to the list of finished
sandwiches. After all the sandwiches have been made, print a message listing
each sandwich that was made.

sandwich_orders = ['veggie', 'grilled cheese', 'turkey', 'roast beef']
finished_sandwiches = []

while sandwich_orders:
current_sandwich = sandwich_orders.pop()
print("I'm working on your " + current_sandwich + " sandwich.")
finished_sandwiches.append(current_sandwich)

print("\n")
for sandwich in finished_sandwiches:

print("I made a " + sandwich + " sandwich.")

Output:

I'm working on your roast beef sandwich.
I'm working on your turkey sandwich.
I'm working on your grilled cheese sandwich.
I'm working on your veggie sandwich.

I made a roast beef sandwich.
I made a turkey sandwich.
I made a grilled cheese sandwich.
I made a veggie sandwich.

top

7-9: No Pastrami

https://ehmatthes.github.io/pcc/solutions/chapter_7.html

Using the list sandwich_orders from Exercise 7-8, make sure the
sandwich 'pastrami' appears in the list at least three times. Add code near the
beginning of your program to print a message saying the deli has run out of
pastrami, and then use a while loop to remove all occurences
of 'pastrami' from sandwich_orders. Make sure no pastrami sandwiches end up
in finished_sandiches.

sandwich_orders = [
'pastrami', 'veggie', 'grilled cheese', 'pastrami',
'turkey', 'roast beef', 'pastrami']

finished_sandwiches = []

print("I'm sorry, we're all out of pastrami today.")
while 'pastrami' in sandwich_orders:

sandwich_orders.remove('pastrami')

print("\n")
while sandwich_orders:

current_sandwich = sandwich_orders.pop()
print("I'm working on your " + current_sandwich + " sandwich.")
finished_sandwiches.append(current_sandwich)

print("\n")
for sandwich in finished_sandwiches:

print("I made a " + sandwich + " sandwich.")

Output:

I'm sorry, we're all out of pastrami today.

I'm working on your roast beef sandwich.
I'm working on your turkey sandwich.
I'm working on your grilled cheese sandwich.
I'm working on your veggie sandwich.

I made a roast beef sandwich.
I made a turkey sandwich.
I made a grilled cheese sandwich.
I made a veggie sandwich.

7-10: Dream Vacation

Write a program that polls users about their dream vacation. Write a prompt
similar to If you could visit one place in the world, where would you
go? Include a block of code that prints the results of the poll.

name_prompt = "\nWhat's your name? "
place_prompt = "If you could visit one place in the world, where would it be? "
continue_prompt = "\nWould you like to let someone else respond? (yes/no) "

Responses will be stored in the form {name: place}.

responses = {}

while True:
Ask the user where they'd like to go.
name = input(name_prompt)
place = input(place_prompt)

Store the response.
responses[name] = place

Ask if there's anyone else responding.
repeat = input(continue_prompt)
if repeat != 'yes':

break

Show results of the survey.
print("\n--- Results ---")
for name, place in responses.items():

print(name.title() + " would like to visit " + place.title() + ".")

Output:

What's your name? eric
If you could visit one place in the world, where would it be? tierra del fuego

Would you like to let someone else respond? (yes/no) yes

What's your name? erin
If you could visit one place in the world, where would it be? iceland

Would you like to let someone else respond? (yes/no) yes

What's your name? ever
If you could visit one place in the world, where would it be? death valley

Would you like to let someone else respond? (yes/no) no

--- Results ---
Ever would like to visit Death Valley.
Erin would like to visit Iceland.
Eric would like to visit Tierra Del Fuego.

8-1: Message

Write a function called display_message() that prints one sentence telling
everyone what you are learning about in this chapter. Call the function, and
make sure the message displays correctly.

def display_message():
"""Display a message about what I'm learning."""
msg = "I'm learning to store code in functions."
print(msg)

display_message()

Output:

I'm learning to store code in functions.

8-2: Favorite Book

Write a function called favorite_book() that accepts one parameter, title. The
function should print a message, such as One of my favorite books is Alice in

Wonderland. Call the function, making sure to include a book title as an
argument in the function call.

def favorite_book(title):
"""Display a message about someone's favorite book."""
print(title + " is one of my favorite books.")

favorite_book('The Abstract Wild')

Output:

The Abstract Wild is one of my favorite books

8-3: T-Shirt

Write a function called make_shirt() that accepts a size and the text of a message
that should be printed on the shirt. The function should print a sentence
summarizing the size of the shirt and the message printed on it.

Call the function once using positional arguments to make a shirt. Call the
function a second time using keyword arguments.

def make_shirt(size, message):
"""Summarize the shirt that's going to be made."""
print("\nI'm going to make a " + size + " t-shirt.")
print('It will say, "' +message + '"')

make_shirt('large', 'I love Python!')
make_shirt(message="Readability counts.", size='medium')

Output:

I'm going to make a large t-shirt.
It will say, "I love Python!"

I'm going to make a medium t-shirt.
It will say, "Readability counts."

8-4: Large Shirts

Modify the make_shirt() function so that shirts are large by default with a
message that reads I love Python. Make a large shirt and a medium shirt with
the default message, and a shirt of any size with a different message.

def make_shirt(size='large', message='I love Python!'):
"""Summarize the shirt that's going to be made."""
print("\nI'm going to make a " + size + " t-shirt.")
print('It will say, "' +message + '"')

make_shirt()
make_shirt(size='medium')
make_shirt('small', 'Programmers are loopy.')

Output:

I'm going to make a large t-shirt.
It will say, "I love Python!"

I'm going to make a medium t-shirt.
It will say, "I love Python!"

I'm going to make a small t-shirt.
It will say, "Programmers are loopy."

8-5: Cities

Write a function called describe_city() that accepts the name of a city and its
country. The function should print a simple sentence, such as Reykjavik is in

Iceland. Give the parameter for the country a default value. Call your function
for three different cities, at least one of which is not in the default country.

def describe_city(city, country='chile'):
"""Describe a city."""
msg = city.title() + " is in " + country.title() + "."
print(msg)

describe_city('santiago')
describe_city('reykjavik', 'iceland')
describe_city('punta arenas')

Output:

Santiago is in Chile.
Reykjavik is in Iceland.

Punta Arenas is in Chile.

8-6: City Names

Write a function called city_country() that takes in the name of a city and its
country. The function should return a string formatted like this:

“Santiago, Chile”

Call your function with at least three city-country pairs, and print the value
that’s returned.

def city_country(city, country):
"""Return a string like 'Santiago, Chile'."""
return(city.title() + ", " + country.title())

city = city_country('santiago', 'chile')
print(city)

city = city_country('ushuaia', 'argentina')
print(city)

city = city_country('longyearbyen', 'svalbard')
print(city)

Output:

Santiago, Chile
Ushuaia, Argentina
Longyearbyen, Svalbard

8-7: Album

Write a function called make_album() that builds a dictionary describing a music
album. The function should take in an artist name and an album title, and it
should return a dictionary containing these two pieces of information. Use the
function to make three dictionaries representing different albums. Print each
return value to show that the dictionaries are storing the album information
correctly.

Add an optional parameter to make_album() that allows you to store the nubmer
of tracks on an album. If the calling line includes a value for the number of
tracks, add that value to the album’s dictionary. Make at least one new
function call that includes the nubmer of tracks on an album.

Simple version:

def make_album(artist, title):
"""Build a dictionary containing information about an album."""
album_dict = {

'artist': artist.title(),
'title': title.title(),
}

return album_dict

album =make_album('metallica', 'ride the lightning')
print(album)

album =make_album('beethoven', 'ninth symphony')
print(album)

album =make_album('willie nelson', 'red-headed stranger')
print(album)

Output:

{'title': 'Ride The Lightning', 'artist': 'Metallica'}
{'title': 'Ninth Symphony', 'artist': 'Beethoven'}
{'title': 'Red-Headed Stranger', 'artist': 'Willie Nelson'}

With tracks:

def make_album(artist, title, tracks=0):
"""Build a dictionary containing information about an album."""
album_dict = {

'artist': artist.title(),
'title': title.title(),
}

if tracks:
album_dict['tracks'] = tracks

return album_dict

album =make_album('metallica', 'ride the lightning')
print(album)

album =make_album('beethoven', 'ninth symphony')
print(album)

album =make_album('willie nelson', 'red-headed stranger')
print(album)

album =make_album('iron maiden', 'piece of mind', tracks=8)
print(album)

Output:

{'artist': 'Metallica', 'title': 'Ride The Lightning'}
{'artist': 'Beethoven', 'title': 'Ninth Symphony'}
{'artist': 'Willie Nelson', 'title': 'Red-Headed Stranger'}
{'tracks': 8, 'artist': 'Iron Maiden', 'title': 'Piece Of Mind'}

8-8: User Albums

Start with your program from Exercise 8-7. Write a while loop that allows users
to enter an album’s artist and title. Once you have that information,
call make_album() with the user’s input and print the dictionary that’s created.
Be sure to include a quit value in the while loop.

def make_album(artist, title, tracks=0):
"""Build a dictionary containing information about an album."""
album_dict = {

'artist': artist.title(),
'title': title.title(),
}

if tracks:
album_dict['tracks'] = tracks

return album_dict

Prepare the prompts.
title_prompt = "\nWhat album are you thinking of? "
artist_prompt = "Who's the artist? "

Let the user know how to quit.
print("Enter 'quit' at any time to stop.")

while True:
title = input(title_prompt)
if title == 'quit':

break

artist = input(artist_prompt)
if artist == 'quit':

break

album =make_album(artist, title)
print(album)

print("\nThanks for responding!")

Output:

Enter 'quit' at any time to stop.

What album are you thinking of? number of the beast
Who's the artist? iron maiden
{'artist': 'Iron Maiden', 'title': 'Number Of The Beast'}

What album are you thinking of? touch of class
Who's the artist? angel romero
{'artist': 'Angel Romero', 'title': 'Touch Of Class'}

What album are you thinking of? rust in peace

Who's the artist?megadeth
{'artist': 'Megadeth', 'title': 'Rust In Peace'}

What album are you thinking of? quit

Thanks for responding!

8-9: Magicians

Make a list of magician’s names. Pass the list to a function
called show_magicians(), wich prints the name of each magician in the list.

def show_magicians(magicians):
"""Print the name of each magician in the list."""
formagician inmagicians:

print(magician.title())

magicians = ['harry houdini', 'david blaine', 'teller']
show_magicians(magicians)

Output:

Harry Houdini
David Blaine
Teller

8-10: Great Magicians

Start with a copy of your program from Exercise 8-9. Write a function
called make_great() that modifies the list of magicians by adding the phrase the
Great to each magician’s name. Call show_magicians() to see that the list has
actually been modified.

def show_magicians(magicians):
"""Print the name of each magician in the list."""
formagician inmagicians:

print(magician)

def make_great(magicians):
"""Add 'the Great!' to each magician's name."""
Build a new list to hold the great musicians.
great_magicians = []

Make each magician great, and add it to great_magicians.
whilemagicians:

magician =magicians.pop()
great_magician =magician + ' the Great'
great_magicians.append(great_magician)

Add the great magicians back into magicians.
for great_magician in great_magicians:

magicians.append(great_magician)

magicians = ['Harry Houdini', 'David Blaine', 'Teller']
show_magicians(magicians)

print("\n")
make_great(magicians)
show_magicians(magicians)

Output:

Harry Houdini
David Blaine
Teller

Teller the Great
David Blaine the Great
Harry Houdini the Great

8-11: Unchanged Magicians

Start with your work from Exercise 8-10. Call the function make_great() with a
copy of the list of magicians’ names. Because the original list will be
unchanged, return the new list and store it in a separate list.
Call show_magicians() with each list to show that you have one list of the original
names and one list with the Great added to each magician’s name.

def show_magicians(magicians):
"""Print the name of each magician in the list."""
formagician inmagicians:

print(magician)

def make_great(magicians):
"""Add 'the Great!' to each magician's name."""
Build a new list to hold the great musicians.
great_magicians = []

Make each magician great, and add it to great_magicians.
whilemagicians:

magician =magicians.pop()
great_magician =magician + ' the Great'
great_magicians.append(great_magician)

Add the great magicians back into magicians.
for great_magician in great_magicians:

magicians.append(great_magician)

returnmagicians

magicians = ['Harry Houdini', 'David Blaine', 'Teller']
show_magicians(magicians)

print("\nGreat magicians:")
great_magicians =make_great(magicians[:])

show_magicians(great_magicians)

print("\nOriginal magicians:")
show_magicians(magicians)

Output:

Harry Houdini
David Blaine
Teller

Great magicians:
Teller the Great
David Blaine the Great
Harry Houdini the Great

Original magicians:
Harry Houdini
David Blaine
Teller

8-12: Sandwiches

Write a function that accepts a list of items a person wants on a sandwich. The
function should have one parameter that collects as many items as the
function call provides, and it should print a summary of the sandiwch that is
being ordered. Call the function three tiems, using a different number of
arguments each time.

def make_sandwich(*items):
"""Make a sandwich with the given items."""
print("\nI'll make you a great sandwich:")
for item in items:

print(" ...adding " + item + " to your sandwich.")
print("Your sandwich is ready!")

make_sandwich('roast beef', 'cheddar cheese', 'lettuce', 'honey dijon')
make_sandwich('turkey', 'apple slices', 'honey mustard')
make_sandwich('peanut butter', 'strawberry jam')

Output:

I'll make you a great sandwich:
...adding roast beef to your sandwich.
...adding cheddar cheese to your sandwich.
...adding lettuce to your sandwich.
...adding honey dijon to your sandwich.

Your sandwich is ready!

I'll make you a great sandwich:
...adding turkey to your sandwich.
...adding apple slices to your sandwich.
...adding honey mustard to your sandwich.

Your sandwich is ready!

I'll make you a great sandwich:
...adding peanut butter to your sandwich.
...adding strawberry jam to your sandwich.

Your sandwich is ready!

8-14: Cars

Write a function that stores information about a car in a dictionary. the
function should always receive a manufacturer and a model name. It should
then accept an arbitrary number of keyword arguments. Call the function with
the required information and two other name-value pairs, such as a color or
an optional feature. Your function should work for a call like this one:

car = make_car('subaru', 'outback', color='blue', tow_package=True)

Print the dictionary that’s returned to make sure all the information was
stored correctly.

def make_car(manufacturer, model, **options):
"""Make a dictionary representing a car."""
car_dict = {

'manufacturer': manufacturer.title(),
'model': model.title(),
}

for option, value in options.items():
car_dict[option] = value

return car_dict

my_outback =make_car('subaru', 'outback', color='blue', tow_package=True)
print(my_outback)

my_accord =make_car('honda', 'accord', year=1991, color='white',
headlights='popup')

print(my_accord)

Output:

{'manufacturer': 'Subaru', 'color': 'blue', 'tow_package': True, 'model': 'Outback'}
{'year': 1991, 'manufacturer': 'Honda', 'color': 'white', 'headlights': 'popup', 'model': 'Accord'}

8-15: Printing Models

Put the functions for the example printing_models.py in a separate file
called printing_functions.py. Write an import statement at the top
of printing_models.py, and modify the file to use the imported functions.

Note: The text refers to print_models.py, but it should say printing_models.py.

printing_functions.py:

"""Functions related to printing 3d models."""

def print_models(unprinted_designs, completed_models):
"""
Simulate printing each design, until there are none left.
Move each design to completed_models after printing.
"""
while unprinted_designs:

current_design = unprinted_designs.pop()

Simulate creating a 3d print from the design.
print("Printing model: " + current_design)
completed_models.append(current_design)

def show_completed_models(completed_models):
"""Show all the models that were printed."""
print("\nThe following models have been printed:")
for completed_model in completed_models:

print(completed_model)

printing_models.py:

import printing_functions as pf

unprinted_designs = ['iphone case', 'robot pendant', 'dodecahedron']
completed_models = []

pf.print_models(unprinted_designs, completed_models)
pf.show_completed_models(completed_models)

Output:

Printing model: dodecahedron
Printing model: robot pendant
Printing model: iphone case

The following models have been printed:
dodecahedron
robot pendant
iphone case

9-1: Restaurant

Make a class called Restaurant. The __init__() method for Restaurant should store
two attributes: a restaurant_name and a cuisine_type. Make a method
called describe_restaurant() that prints these two pieces of information, and a
method called open_restaurant() that prints a message indicating that the
restaurant is open.

Make an instance called restaurant from your class. Print the two attributes
individually, and then call both methods.

class Restaurant():
"""A class representing a restaurant."""

def __init__(self, name, cuisine_type):
"""Initialize the restaurant."""
self.name = name.title()
self.cuisine_type = cuisine_type

def describe_restaurant(self):
"""Display a summary of the restaurant."""
msg = self.name + " serves wonderful " + self.cuisine_type + "."
print("\n" +msg)

def open_restaurant(self):
"""Display a message that the restaurant is open."""
msg = self.name + " is open. Come on in!"
print("\n" +msg)

restaurant = Restaurant('the mean queen', 'pizza')
print(restaurant.name)
print(restaurant.cuisine_type)

restaurant.describe_restaurant()
restaurant.open_restaurant()

Output:

The Mean Queen
pizza

The Mean Queen serves wonderful pizza.

The Mean Queen is open. Come on in!

top

9-2: Three Restaurants

Start with your class from Exercise 9-1. Create three different instances from
the class, and call describe_restaurant() for each instance.

class Restaurant():
"""A class representing a restaurant."""

def __init__(self, name, cuisine_type):
"""Initialize the restaurant."""
self.name = name.title()
self.cuisine_type = cuisine_type

def describe_restaurant(self):

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

"""Display a summary of the restaurant."""
msg = self.name + " serves wonderful " + self.cuisine_type + "."
print("\n" +msg)

def open_restaurant(self):
"""Display a message that the restaurant is open."""
msg = self.name + " is open. Come on in!"
print("\n" +msg)

mean_queen = Restaurant('the mean queen', 'pizza')
mean_queen.describe_restaurant()

ludvigs = Restaurant("ludvig's bistro", 'seafood')
ludvigs.describe_restaurant()

mango_thai = Restaurant('mango thai', 'thai food')
mango_thai.describe_restaurant()

Output:

The Mean Queen serves wonderful pizza.

Ludvig'S Bistro serves wonderful seafood.

Mango Thai serves wonderful thai food.

top

9-3: Users

Make a class called User. Create two attributes called first_name and last_name,
and then create several other attributes that are typically stored in a user
profile. Make a method called describe_user() that prints a summary of the user’s
information. Make another method called greet_user() that prints a personalized
greeting to the user.

Create several instances representing different users, and call both methods
for each user.

class User():
"""Represent a simple user profile."""

def __init__(self, first_name, last_name, username, email, location):
"""Initialize the user."""
self.first_name = first_name.title()
self.last_name = last_name.title()
self.username = username
self.email = email
self.location = location.title()

def describe_user(self):
"""Display a summary of the user's information."""

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

print("\n" + self.first_name + " " + self.last_name)
print(" Username: " + self.username)
print(" Email: " + self.email)
print(" Location: " + self.location)

def greet_user(self):
"""Display a personalized greeting to the user."""
print("\nWelcome back, " + self.username + "!")

eric = User('eric', 'matthes', 'e_matthes', 'e_matthes@example.com', 'alaska')
eric.describe_user()
eric.greet_user()

willie = User('willie', 'burger', 'willieburger', 'wb@example.com', 'alaska')
willie.describe_user()
willie.greet_user()

Output:

Eric Matthes
Username: e_matthes
Email: e_matthes@example.com
Location: Alaska

Welcome back, e_matthes!

Willie Burger
Username: willieburger
Email: wb@example.com
Location: Alaska

Welcome back, willieburger!

top

9-4: Number Served

Start with your program from Exercise 9-1 (page 166). Add an attribute
called number_served with a default value of 0. Create an instance
called restaurant from this class. Print the number of customers the restaurant
has served, and then change this value and print it again.

Add a method called set_number_served() that lets you set the number of
customers that have been served. Call this method with a new number and
print the value again.

Add a method called increment_number_served() that lets you increment the
number of customers who’ve been served. Call this method with any number
you like that could represent how many customers were served in, say, a day
of business.

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

class Restaurant():
"""A class representing a restaurant."""

def __init__(self, name, cuisine_type):
"""Initialize the restaurant."""
self.name = name.title()
self.cuisine_type = cuisine_type
self.number_served = 0

def describe_restaurant(self):
"""Display a summary of the restaurant."""
msg = self.name + " serves wonderful " + self.cuisine_type + "."
print("\n" +msg)

def open_restaurant(self):
"""Display a message that the restaurant is open."""
msg = self.name + " is open. Come on in!"
print("\n" +msg)

def set_number_served(self, number_served):
"""Allow user to set the number of customers that have been served."""
self.number_served = number_served

def increment_number_served(self, additional_served):
"""Allow user to increment the number of customers served."""
self.number_served += additional_served

restaurant = Restaurant('the mean queen', 'pizza')
restaurant.describe_restaurant()

print("\nNumber served: " + str(restaurant.number_served))
restaurant.number_served = 430
print("Number served: " + str(restaurant.number_served))

restaurant.set_number_served(1257)
print("Number served: " + str(restaurant.number_served))

restaurant.increment_number_served(239)
print("Number served: " + str(restaurant.number_served))

Output:

The Mean Queen serves wonderful pizza.

Number served: 0
Number served: 430
Number served: 1257
Number served: 1496

top

9-5: Login Attempts

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

Add an attribute called login_attempts to your User class from Exercise 9-3 (page
166). Write amehtod called increment_login_attempts() that increments the value
of login_attempts by 1. Write another method called reset_login_attempts() that
resets the value of login_attempts to 0.

Make an instance of the User class and call increment_login_attempts() several times.
Print the value of login_attempts to make sure it was incremented properly, and
then call reset_login_attempts(). Print login_attempts again to make sure it was reset
to 0.

class User():
"""Represent a simple user profile."""

def __init__(self, first_name, last_name, username, email, location):
"""Initialize the user."""
self.first_name = first_name.title()
self.last_name = last_name.title()
self.username = username
self.email = email
self.location = location.title()
self.login_attempts = 0

def describe_user(self):
"""Display a summary of the user's information."""
print("\n" + self.first_name + " " + self.last_name)
print(" Username: " + self.username)
print(" Email: " + self.email)
print(" Location: " + self.location)

def greet_user(self):
"""Display a personalized greeting to the user."""
print("\nWelcome back, " + self.username + "!")

def increment_login_attempts(self):
"""Increment the value of login_attempts."""
self.login_attempts += 1

def reset_login_attempts(self):
"""Reset login_attempts to 0."""
self.login_attempts = 0

eric = User('eric', 'matthes', 'e_matthes', 'e_matthes@example.com', 'alaska')
eric.describe_user()
eric.greet_user()

print("\nMaking 3 login attempts...")
eric.increment_login_attempts()
eric.increment_login_attempts()
eric.increment_login_attempts()
print(" Login attempts: " + str(eric.login_attempts))

print("Resetting login attempts...")
eric.reset_login_attempts()
print(" Login attempts: " + str(eric.login_attempts))

Output:

Eric Matthes
Username: e_matthes
Email: e_matthes@example.com
Location: Alaska

Welcome back, e_matthes!

Making 3 login attempts...
Login attempts: 3

Resetting login attempts...
Login attempts: 0

top

9-6: Ice Cream Stand

An ice cream stand is a specific kind of restaurant. Write a class
called IceCreamStand that inherits from the Restaurant class you wrote in Exercise
9-1 (page 166) or Exercise 9-4 (page 171). Eitehr version of the class will work;
just pick the one you like better. Add an attribute called flavors that stores a list
of ice cream flavors. Write a method that displays theese flavors. Create an
instance of IceCreamStand, and call this method.

class Restaurant():
"""A class representing a restaurant."""

def __init__(self, name, cuisine_type):
"""Initialize the restaurant."""
self.name = name.title()
self.cuisine_type = cuisine_type
self.number_served = 0

def describe_restaurant(self):
"""Display a summary of the restaurant."""
msg = self.name + " serves wonderful " + self.cuisine_type + "."
print("\n" +msg)

def open_restaurant(self):
"""Display a message that the restaurant is open."""
msg = self.name + " is open. Come on in!"
print("\n" +msg)

def set_number_served(self, number_served):
"""Allow user to set the number of customers that have been served."""
self.number_served = number_served

def increment_number_served(self, additional_served):
"""Allow user to increment the number of customers served."""
self.number_served += additional_served

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

class IceCreamStand(Restaurant):
"""Represent an ice cream stand."""

def __init__(self, name, cuisine_type='ice_cream'):
"""Initialize an ice cream stand."""
super().__init__(name, cuisine_type)
self.flavors = []

def show_flavors(self):
"""Display the flavors available."""
print("\nWe have the following flavors available:")
for flavor in self.flavors:

print("- " + flavor.title())

big_one = IceCreamStand('The Big One')
big_one.flavors = ['vanilla', 'chocolate', 'black cherry']

big_one.describe_restaurant()
big_one.show_flavors()

Output:

The Big One serves wonderful ice_cream.

We have the following flavors available:
- Vanilla
- Chocolate
- Black Cherry

top

9-7: Admin

An administrator is a special kind of user. Write a class called Admin that
inherits from the User class you wrote in Exercise 9-3 (page 166) or Exercise
9-5 (page 171). Add an attribute, privileges, that stores a list of strings like "can

add post", "can delete post", "can ban user", and so on. WRite a method
called show_privileges() that lists the administrator’s set of privileges. Create an
instance of Admin, and call your method.

class User():
"""Represent a simple user profile."""

def __init__(self, first_name, last_name, username, email, location):
"""Initialize the user."""
self.first_name = first_name.title()
self.last_name = last_name.title()
self.username = username
self.email = email
self.location = location.title()
self.login_attempts = 0

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

def describe_user(self):
"""Display a summary of the user's information."""
print("\n" + self.first_name + " " + self.last_name)
print(" Username: " + self.username)
print(" Email: " + self.email)
print(" Location: " + self.location)

def greet_user(self):
"""Display a personalized greeting to the user."""
print("\nWelcome back, " + self.username + "!")

def increment_login_attempts(self):
"""Increment the value of login_attempts."""
self.login_attempts += 1

def reset_login_attempts(self):
"""Reset login_attempts to 0."""
self.login_attempts = 0

class Admin(User):
"""A user with administrative privileges."""

def __init__(self, first_name, last_name, username, email, location):
"""Initialize the admin."""
super().__init__(first_name, last_name, username, email, location)
self.privileges = []

def show_privileges(self):
"""Display the privileges this administrator has."""
print("\nPrivileges:")
for privilege in self.privileges:

print("- " + privilege)

eric = Admin('eric', 'matthes', 'e_matthes', 'e_matthes@example.com', 'alaska')
eric.describe_user()

eric.privileges = [
'can reset passwords',
'can moderate discussions',
'can suspend accounts',
]

eric.show_privileges()

Output:

Eric Matthes
Username: e_matthes
Email: e_matthes@example.com
Location: Alaska

Privileges:
- can reset passwords
- can moderate discussions

- can suspend accounts

top

9-8: Privileges

Write a separate Privileges class. The class should have one attribute, privileges,
that stores a list of strings as described in Exercise 9-7. Move
the show_privileges() method to this class. Make a Privileges instance as an
attribute in the Admin class. Create a new instance of Admin and use your
method to show its privileges.

class User():
"""Represent a simple user profile."""

def __init__(self, first_name, last_name, username, email, location):
"""Initialize the user."""
self.first_name = first_name.title()
self.last_name = last_name.title()
self.username = username
self.email = email
self.location = location.title()
self.login_attempts = 0

def describe_user(self):
"""Display a summary of the user's information."""
print("\n" + self.first_name + " " + self.last_name)
print(" Username: " + self.username)
print(" Email: " + self.email)
print(" Location: " + self.location)

def greet_user(self):
"""Display a personalized greeting to the user."""
print("\nWelcome back, " + self.username + "!")

def increment_login_attempts(self):
"""Increment the value of login_attempts."""
self.login_attempts += 1

def reset_login_attempts(self):
"""Reset login_attempts to 0."""
self.login_attempts = 0

class Admin(User):
"""A user with administrative privileges."""

def __init__(self, first_name, last_name, username, email, location):
"""Initialize the admin."""
super().__init__(first_name, last_name, username, email, location)

Initialize an empty set of privileges.
self.privileges = Privileges()

https://ehmatthes.github.io/pcc/solutions/chapter_9.html

class Privileges():
"""A class to store an admin's privileges."""

def __init__(self, privileges=[]):
self.privileges = privileges

def show_privileges(self):
print("\nPrivileges:")
if self.privileges:

for privilege in self.privileges:
print("- " + privilege)

else:
print("- This user has no privileges.")

eric = Admin('eric', 'matthes', 'e_matthes', 'e_matthes@example.com', 'alaska')
eric.describe_user()

eric.privileges.show_privileges()

print("\nAdding privileges...")
eric_privileges = [

'can reset passwords',
'can moderate discussions',
'can suspend accounts',
]

eric.privileges.privileges = eric_privileges
eric.privileges.show_privileges()

Output:

Eric Matthes
Username: e_matthes
Email: e_matthes@example.com
Location: Alaska

Privileges:
- This user has no privileges.

Adding privileges...

Privileges:
- can reset passwords
- can moderate discussions
- can suspend accounts

	4-11: My Pizzas, Your Pizzas
	6-1: Person
	6-2: Favorite Numbers
	6-3: Glossary
	6-4: Glossary 2
	6-5: Rivers
	6-6: Polling
	6-7: People
	6-8: Pets
	6-9: Favorite Places
	7-1: Rental Car
	7-2: Restaurant Seating
	7-3: Multiples of Ten
	7-4: Pizza Toppings
	7-5: Movie Tickets
	7-8: Deli
	7-9: No Pastrami
	7-10: Dream Vacation
	8-1: Message
	8-2: Favorite Book
	8-3: T-Shirt
	8-4: Large Shirts
	8-5: Cities
	8-6: City Names
	8-7: Album
	8-8: User Albums
	8-9: Magicians
	8-10: Great Magicians
	8-11: Unchanged Magicians
	8-12: Sandwiches
	8-14: Cars
	8-15: Printing Models
	9-1: Restaurant
	9-2: Three Restaurants
	9-3: Users
	9-4: Number Served
	9-5: Login Attempts
	9-6: Ice Cream Stand
	9-7: Admin
	9-8: Privileges

