

Final Paper

Submitted By:
Yahya Riaz (12280)
BSSE Section A

Submitted To:
Sir Mansoor Qadir

Dated:
$25^{\text {th }}$ September 2020

Paper:
Linear Algebra

Linear Algebra

Summer Final Exam
Note: Submission time 25-09-2020 before 6:00 pm (3 Hrs)
Students who have not attempted mid term exam, must download and solve 80 marks paper only

Question No: $1 \quad 10$ marks
Find the eigenvalues of A

$$
\left.A=\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -17 & 8
\end{array}\right]
$$

Question No. 2
10 marks
Find a matrix P that diagonalizes the below matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

Question No. 3
10 marks
Determine whether the vectors form linear dependent or independent sets.

$$
\begin{aligned}
& \mathrm{V} 1=(1,-2,3) \\
& \mathrm{V} 2=(5,6,-1) \\
& \mathrm{V} 3=(3,2,1)
\end{aligned}
$$

Question No. 4
20 marks
What are the four main things we need to define for a vector space? Which of the following is a vector space over R? For those that are not vector spaces, modify one part of the definition to make it into a vector space.
a. $\mathrm{V}=\{2 \times 2$ matrices with entries in R$\}$, usual matrix addition, and

$$
k \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
k & b \\
k c & d
\end{array}\right) \text { for } k \in R
$$

b. $\quad \mathrm{V}=\{$ Polynomials with complex coefficients of degrees $\leq 3\}$, with usual addition and scalar multiplication of polynomials.

Question \#1:
Answer:

Question \# 01 :-

$$
\operatorname{let}[A-1 I]=0
$$

$$
\text { let }[A-11]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -17 & 8
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=0
$$

$$
\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
4 & -17 & 8-\lambda
\end{array}\right|=0
$$

$-1\left|\begin{array}{cc}-1 & 1 \\ -17 & 8-1\end{array}\right|-1\left|\begin{array}{cc}0 & 1 \\ 4 & 8-1\end{array}\right|=0$

$$
-1[-1(8-1)+17]-1(-4)=0
$$

$$
-1\left[-8 \lambda+\lambda^{2}+17\right]+4=0
$$

$-\lambda^{3}+8 \lambda^{2}-17 \lambda+4=0$
$1 \lambda^{3}-8 \lambda^{2}+17 \lambda-4=0$
$1=4$ is a root

4 | 4 | -8 | 17 | -4 | |
| :---: | :---: | :---: | :---: | :---: |
| | \downarrow | 4 | -16 | 4 |
| | 1 | -4 | 1 | 0 |

$$
\begin{aligned}
& \lambda^{2}-4 \lambda+1=0 \\
& \lambda=4 \pm \sqrt{\frac{16-4(1)(1)}{2}} \\
& =\frac{4 \pm 2 \sqrt{3}}{2} \\
& \lambda=2 \pm \sqrt{3}
\end{aligned}
$$

Question \#2:
Answer:

Question $\# 102$
Solulion:-
A cau be diagonalized if thene exists on investible matrix P rud diagonal matiox O such that $A=P D P^{-1}$

Hese

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

findiung eigenwalues of the mation A

$$
\begin{aligned}
& |A-d I|=0 \\
& \left|\begin{array}{ccc}
(-1) & 0 & -2 \\
1 & (2-1) & 1 \\
1 & 0 & (3-1)
\end{array}\right|=0 \quad . \\
& (-1)((2-1)(3-1)-1(0))-0(1(3-1)-1(1)) \\
& 8(6020) 65(8)-2003 \\
& +(-2) 1(0)-(2-\lambda)(1))=0 \\
& -1\left(\left(6-5 \lambda+\lambda^{2}\right)-0\right)-0((3-1)-1)-2(0-(21)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1)(6-51+1} \left.\lambda^{2}\right)-0(2-\lambda)-2(-2+1)=0 \\
& \left(-6 \lambda+5 \lambda^{2}-\lambda^{3}\right)-0-(-4+2 \lambda)=0 \\
& \left.-\lambda^{3}+5 \lambda^{2}-8 \lambda+4\right)=0 \\
& -(\lambda-1)(\lambda-2)(\lambda-2)=0
\end{aligned}
$$

So

$$
\lambda-1=0, \quad \lambda-2=0, \quad 1-2=0
$$

The eigenvalues of the matron A are given by $\lambda=1,2$.
$\therefore 2$ Eigenvector of $t=12$

$$
v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

The ergeurectors compose the columens
of malix. P

$$
P=\left[\begin{array}{ccc}
-2 & 0 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

The diafonal matrix 0 is comyosed of eiganvalues.

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
|P|=\left|\begin{array}{ccc}
-2 & 0 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right|
$$ Now fiual P^{-1}

$$
\begin{aligned}
& =-2(1 \times 1-0 \times 0)+0(1 \times 1-0 \times 1)-1(|\times 0+1 \times 1| \\
& =-2(1+0)+0(1+0)-1(0-1) \\
& =-2(1)+0(1)-1(-1)
\end{aligned}
$$

$$
=-1
$$

Question \#3:
Answer:

Question \# 03:-

$$
\begin{aligned}
& \text { Solutions- } \\
& \text { Hese } A=(1,-2,3), B=(5,6,1) \\
& C=(23,2,1)
\end{aligned}
$$

The vectors A, B, C ase lineasly dependaici If Chier determinantil is Zero $|D|=0$.

$$
|D|=\left|\begin{array}{ccc}
1 & -2 & 3 \\
5 & 6 & -1 \\
3 & 2 & 1
\end{array}\right|
$$

$$
=1\left|\begin{array}{cc}
6 & -1 \\
2 & 1
\end{array}\right|+2\left|\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right|+3\left|\begin{array}{ll}
5 & 6 \\
3 & 2
\end{array}\right|
$$

$$
=1(6 \times 1-(-1) \times 2)+2(5 \times 1-(-1) \times 3)+3(5+2-6 \times 3)
$$

$$
=1(8+2)(8)+3(-8)
$$

$$
=8+16-24
$$

$$
=0
$$

\rightarrow Srince $|D|=0$, So vectors A, B, C are linearlu independeil.

Question \#4 (a):

A vector is a set V on which two operation + and - are defined, called vector addition and scalar multiplication.
The operation + (vector addition) must satisfy the following conditions:
Closure: if u and v are any vectors in V, then the sum $u+v$ belongs to V.

1. Commutative law: For all vectors u and v in $\mathrm{V}, \mathrm{u}+\mathrm{v}=\mathrm{v}+\mathrm{u}$.
2. Associative law: For all vectors u, v, w in $V, u+(v+w)=(u+v)+w$.
3. Additive identity: The set V contains an additive identity element, denote by 0 , such that for any vector v in $\mathrm{V}, 0+\mathrm{v}=\mathrm{v}$ and $\mathrm{v}+0=\mathrm{v}$.
4. Additive inverses: for each vector v in V, the equations $v+x=0$ and $x+v=0$ have a solution x in V , called an additive inverse of v , and denoted by -v .
The set $\mathrm{Pn}(\mathrm{x})$ of all the polynomials over R in variable x of degree $<=\mathrm{n}$ forms a vector space over R.
If $F_{n}(x)=a 0+a 1 x+\ldots \ldots+a n x n$
And $g_{n}(x)=b_{0}+b_{1} x+\ldots \ldots .+b_{n} x_{n}, a_{i}, b_{i} E R$
Then $F_{n}(x)+g_{n}(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\ldots \ldots .\left(a_{n}+b_{n}\right) x^{n}$

The associative additive property is included from the additive associative property of R.
The zero polynomial $f(x)=0$ of degree 0 acts as the additive identity of $P(x)$ and $-f(x)=-a_{0}+\left(-a_{1}\right) x+\ldots .+(-$ $\left.a_{n}\right) x^{n}$ additive inverse of $f_{n}(x)$.

Commutative property follows from the commutative property of R. Hence $P_{n}(x)$ is an additive abelian group.

The scalar multiplication of a E R by $f_{n}(x)=a a_{0}+\left(a a_{1}\right) x+\left(a a_{2}\right) x_{2} \ldots+\left(a a_{n}\right) x^{n} E P_{n}(x)$.
it observes properties of scalar multiplication which can easily be verified. So that $p_{n}(x)$ forms a vector space over R.

Question \#4 (b):

