Department of Electrical Engineering Final Assignment Date: 23-06-2020

<u>c</u>	ourse Details	
Course Title: <u>Electro Magnetic Field</u> Semester	Theory Module:	<u>4th</u>
Instructor: Dr Rafiq Mansoor	Total Marks: 50	<u>.</u>
St	tudent Details	
Name: M.Salman Shahid	Student ID: <u>15006</u>	

Q1: Solve	(a)	Determine the magnetic field at the center of the semicircular	Marks 10
the following short Question		piece of wire with radius 0.20m. The current carried by the semicircular of wire is 150A.	CLO 2
	(b)	A circular coil of radius 5×10^{-2} m and with 40 turns is carrying	Marks 10
		a current of 0.25 A. Determine the magnetic field of the circular coil at the center.	CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05m. 2amp is the reading of the current flowing through this closed loop.	Marks 07
			CLO 2
	(b)	Within the cylinder $\rho = 2$, $0 < z < 1$, the potential is given by $V =$	Marks 08
		$100+50\rho+150\rho Sin\phi V$. (a) Find V , E , D , and at p (1, , 0.5) in free space. (b) How much charge lies within the cylinder?	CLO 2
Q3:		Given the time-varying magnetic field $B = (0.5 + 0.6 - 0.3)$	Marks 15
	(a)) and a square filamentary loop with its corners at (2, 3, 0), (2,-3,0), and (-2,3,0) and (-2,-3,0), find the time-varying current flowing in the general direction if the total loop resistance is .	CLO 3

A circular coil of radius 5×10^{-2} m and with 40 turns is carrying (b) Marks 10 a current of 0.25 A. Determine the magnetic field of the circular CLO 2 coil at the center. V = 5x10-2 Given data: Current = I = 0-25 A Radius = Y = 5x 10-2 Number of = N= 40 turns

Using equation $B = HoN \frac{I}{2R}$ $A_0 = 1.26 \times 10^{-6} \text{ Mo}$ $A_0 = 1.26 \times 10^{-6} \text{ Mo}$

Marks 08

CLO 2

1914(p):-

b) flow much charge lies with the Cylinder

we integrat ρ_{V} over the volume to obtain $Q = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{2} -\frac{5060}{\rho} P d\rho d\phi dz$

 $Q = -2\pi (50) 60(2) = -5.56nC$

5

Q3:	, ,	Given the time-varying magnetic field B= $(0.5a_x+0.6a_y -$	Marks 15
	(a)	$0.3a_z$) $cos5000t$ T and a square filamentary loop with its corners at $(2, 3, 0)$, $(2,-3,0)$, and $(-2,3,0)$ and $(-2,-3,0)$, find the time-varying current flowing in the general a_{φ} direction if the total loop resistance is $400k\Omega$.	CLO 3

first we write emf = & E.dL = -d+ = -d (looparea B. az da = d (0.3) (4) (6) cos 5000t where the loop hormal is chosen as Positive az, s, that the Path integral for E is taken around the tive at direction. Taking derivative we find emf= -7.2 (6000)sin5000t $I = \frac{emf}{R} = \frac{-36000 \, sin \, 5000 \, t}{4000 \, x \, lo^3} = -90 \, sin \, 5000 \, tm$ So the time varying current floring