Department of Electrical

Engineering Final Assignment
Date: 23-06-2020

Course Detalls

Course Title: Electro Magnetic Field Theory Module: $\underline{4^{\text {th }}}$ Semester

Instructor: Dr Rafiq Mansoor
Total Marks: 50

Student Details

Name: M.Salman Shahid
Student ID: \qquad

Q1: Solve the following short Question	(a)	Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20 m . The current carried by the semicircular of wire is 150 A .	Marks 10
			CLO 2
	(b)	A circular coil of radius $5 \times 10^{-2} \mathrm{~m}$ and with 40 turns is carrying a current of 0.25 A . Determine the magnetic field of the circular coil at the center.	Marks 10
			CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05 m .2 amp is the reading of the current flowing through this closed loop.	Marks 07
			CLO 2
	(b)	Within the cylinder $\rho=2,0<z<1$, the potential is given by $V=$ $100+50 \rho+150 \rho \operatorname{Sin} \phi V$. (a) Find V, E, D, and at p (1,, 0.5$)$ in free space. (b) How much charge lies within the cylinder?	Marks 08
			CLO 2
Q3:	(a)	Given the time-varying magnetic field $\mathrm{B}=(0.5+0.6-0.3$) and a square filamentary loop with its corners at $(2,3,0),(2,-3,0)$, and $(-2,3,0)$ and $(-2,-3,0)$, find the time-varying current flowing in the general direction if the total loop resistance is .	Marks 15
			CLO 3

(a)	Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20 m . The current carried by the semicircular of wire is 150 A.	Marks 10

when we apply right hand rule we see that the direction of magnetic field is inward. Since we have semicircle.
So
we Put $\frac{1}{2}$ in formula

$$
\begin{aligned}
& B=2 \pi k \cdot \frac{i}{r} \\
& B=\frac{1}{2} 2 \pi k \frac{i}{r}
\end{aligned}
$$

$$
\begin{aligned}
B & =\frac{1}{2} 2 \pi K \frac{i}{\gamma} \\
B & =\frac{1}{2} 2.3 .141 \times 10^{-7} \times \frac{150}{0.20} \\
B & =2.35575 \times 10^{-4} \frac{\mathrm{~N}}{\text { Amp.m }} \\
& =2.355 \times 10^{-4} \mathrm{NAmp}^{-\frac{1}{m}}
\end{aligned}
$$

\qquad a current of 0.25 A . Determine the magnetic field of the circular coil at the center.

Given data:-

$$
\begin{aligned}
& \text { Current }=I=0.25 \mathrm{~A} \\
& \text { Radius }=r=5 \times 10^{-2} \\
& \text { Number of }=N=40 \\
& \text { turns }
\end{aligned}
$$

Using equation

$$
\begin{aligned}
B & =\mu_{0} N \frac{I}{2 R} \quad \therefore U_{0}=1.26 \times 10^{-\frac{6}{\mathrm{~m}} / \mathrm{A}} \\
& \Rightarrow \frac{1.26 \times 10^{-6} \times 40 \times 0.25 \mathrm{~A}}{2\left(5 \times 10^{-2}\right)} \\
B & =1.26 \times 10^{-4} \mathrm{~A} \cdot \mathrm{~mm}^{-1}
\end{aligned}
$$

Given data:-

$$
\begin{aligned}
& R=0.05 \mathrm{~m} \\
& I=2 \mathrm{amp} \\
& u=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}
\end{aligned}
$$

$\xrightarrow{\text { Ampere's }}$ law formula

$$
\oint \vec{B} \overrightarrow{d I}=u_{0} I
$$

In case of straight wire

$$
\begin{aligned}
& \oint \overrightarrow{d I}=2 \pi R=2 \times 3.141 \times 0.05=0.314 \\
& B \oint \vec{I}=M_{0} I \\
& \vec{B}=\frac{\mu_{0} I}{2 \pi R}=\frac{4 \pi \times 10^{-7} \times 2}{0.314}=8 \times 10^{-6} \mathrm{~T}
\end{aligned}
$$

(b) Within the cylinder $\rho=2,0<z<1$, the potential is given by $V=$ $100+50 \rho+150 \rho \operatorname{Sin} \phi V$. (a) Find V, E, D, and ρ_{v} at $\mathrm{p}\left(1,60^{\circ}\right.$,

By substituting given Point we find $v_{p}=279.9 v$ then

$$
\begin{aligned}
E & =-\nabla V=-\frac{\partial V}{\partial p} a p-\frac{1}{\rho} \frac{\partial v}{\partial \phi} d \phi \\
& =-[50+150 \sin \phi] d p-[150 \cos \phi] a \phi
\end{aligned}
$$

Evaluating above p to find E_{p}

$$
\begin{aligned}
& =-179 \cdot 9 a p-75 \cdot 0 a \phi \mathrm{~V} / \mathrm{m} \\
& \text { Now } D=\epsilon_{0} E \text { so } D_{p}=-1 \cdot 59 a p-.664 a \phi n<\mathrm{m}^{2} \\
& P_{v}=\nabla \cdot D=\left(\frac{1}{\rho}\right) \frac{d}{d p}\left(\rho D_{p}\right)+\frac{1}{\rho} \frac{\partial D \phi}{\partial \phi} \\
& =\left[-\frac{1}{\rho}(50+150 \sin \phi)+\frac{1}{\rho} 150 \sin \phi\right]
\end{aligned}
$$

$$
\varepsilon_{0}=\frac{-50}{p} \epsilon_{0} C
$$

At P this is $P_{V P}=-443 P C / m^{3}$
b) How much charge lies with
the cylinder
we integrat fr over the volume to obtain

$$
\begin{aligned}
& Q=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{2}-\frac{50 \epsilon 0}{\rho} \rho d \rho d \phi d z \\
& Q=-2 \pi(50) t o(2)=-5.56 n C
\end{aligned}
$$

Given the time-varying magnetic field $\mathrm{B}=\left(0.5 a_{x}+0.6 a_{y}-\right.$ $\left.0.3 a_{z}\right) \cos 5000 t T$ and a square filamentary loop with its corners at $(2,3,0),(2,-3,0)$, and $(-2,3,0)$ and $(-2,-3,0)$, find the time-varying current flowing in the general a_{φ} direction if the total loop resistance is $400 \mathrm{k} \Omega$.

LB:-

$$
\begin{aligned}
& \text { first we write } \\
& e_{m f}=\oint E \cdot d L=-\frac{d \phi}{d t}=-\frac{d}{d t} \iint_{\text {loopareq }} \\
& B \cdot a z d a=\frac{d}{d t}(0.3)(4)(6) \cos 5000 t
\end{aligned}
$$

Where the loop normal is chosen as Positive a_{z}, so that the Path integral ar direction. Taking derivative we find

$$
\begin{aligned}
e m f & =-7.2(5000) \sin 5000 t \\
I & =\frac{e^{m f}}{R}=\frac{-36000 \sin 5000 t}{4000 \times 10^{3}}=-90 \sin 5000 t_{\mathrm{mA}}
\end{aligned}
$$

So the time varying current flowing
$-90 \sin 500$ ot mA

$$
-90 \sin 500 \circ t_{m A}
$$

