

IQRA NATIONAL UNIVERSITY PESHAWAR

Submitted To Engr Fawad Sahib

Submitted By Qazi Syed Taif Ullah Shah

Student ID 14374

Program MS Transportation Engineering

Date Of Submission 28 sep 2020

IQRA NATIONAL UNIVERSITY PESHAWAR

Q1/007 Given pata: 10= 14374 F = 14N Elastic limit = 207000 KP9 E = 223 × 10 16 pa n=0 F.05 N= 1 X = 14+5= 19cm y = 14 Required data = Determine diameter of shaft =? Sol The moment at section A 15 M = 11000 x 14 = 154000 and The Porque on The shaft is J = 11000x 0.14=1540 The normal stress due to M at A is $S = \frac{64 \, \text{md}}{2 \pi d^4} = \frac{32 \, \text{m}}{\pi d^2}$ Maximum Shear Stress due to Tat A is $T = \frac{32Jd}{\sqrt{1}d^4} = \frac{16}{\sqrt{1}d^3}$ The shear stress due to shear force t is zero at A Sns = 12 8 = 1/2 (8+422)1/2 Maximum shear stress Theory Tmax = 1/2 (61-82) (ni+++1) 1/2

QNOOL page # 02 $= \frac{16 \left(m^2 + 7^2\right)^{1/2}}{\pi d^3} \left(154552 + 1545\right)^{1/2}$ 2464123.197 1013 NTime = 784752.61 pg This should not exceed the maximum shear stress volume at yeviding in uniaxial shear stress valume at yielding in un Tension Test. $\frac{1}{d^2} 784752.61 = \frac{84}{2} = \frac{1784752.61}{12} = \frac{207\times10^6}{2}$ => 103.5 x 106 d3 = 7582.15 x 106 d= 19.64x 16 m3 d = 19.64 cm3 O octa Shear stress Theory $T = \frac{1}{3} \left[\left(0_1 - 0_2 \right)^2 + \left(\delta_2 - 0_3 \right)^2 + \left(\delta_3 - \delta_1 \right)^2 \right]^{\frac{1}{2}}$ with Or = 0 T=/3[201+20,-28,83]/2 7 10 (87 3×) /2

بعدالت جنار page # 03

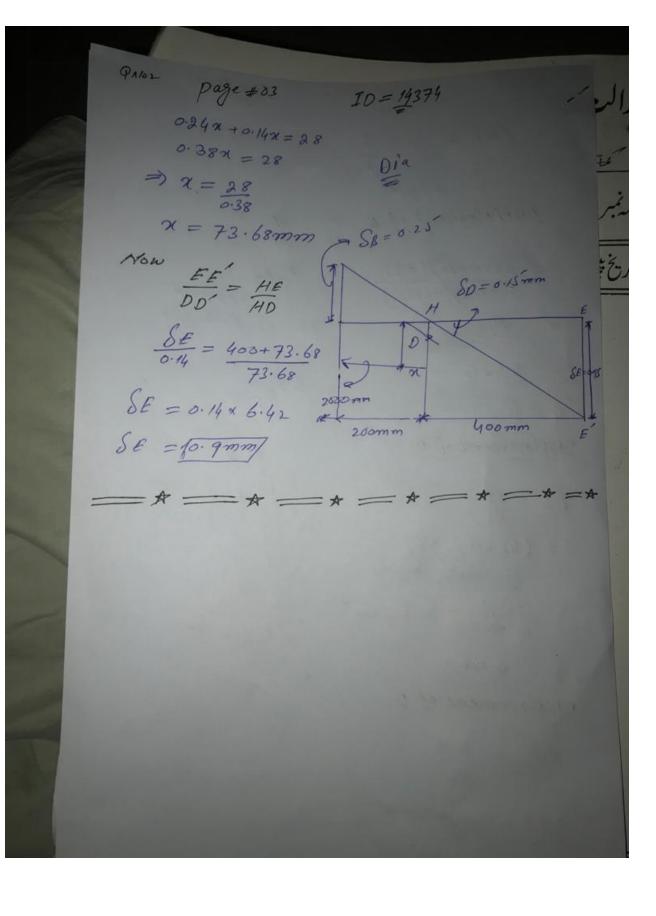
= 195 (4M+3+) 3 7 /2

 $= \frac{19\sqrt{2}}{3\pi d^{3}} \left(\frac{4M+3T}{4M+3T} \right) = \frac{19\sqrt{2}}{3\pi d^{3}} \left(\frac{4(154050)}{4(154000)} + 3(1540)^{2} \right)^{1/2}$ $= \frac{19\sqrt{2}}{3\pi d^{3}} \left(\frac{4(154000)}{4(154000)} + 3(1540)^{2} \right)^{1/2}$

= (9.4864 x 16 + 7114800)

 $= \frac{19}{5} \left(\frac{308011.54}{37.43} \right) = \frac{52}{37.43} \left(\frac{308011.54}{37.43} \right)$ = 5 864

Equating This oct shear stress at yielding of an Unional Tension bar's and using factor = 14


 $\frac{\sqrt{14}}{3}84 = \sqrt{14} = 14 \times 308011.54$

= 14 x 308011.54 = Td on = Td x207 x106

d= 162.72 x 106

d= 162.72 cm3

Page #01 10 = 14374 PNO Z Solution: Apply a gree body analysis to The bar BDE to find the forces exerted by links AB and DC > Evaluate The deformation of links AB and DC Or Displacements of B and D > work out The geometry to find The deflection at E. given the deflection at B and D Datas En = 709pa A. = 583mm Est = 286999 Ast = 60 mm2 Required Datas Deblectima) of B, b) of D and c) ofE Free body BAR RDE 5 MB = 0 0 = - (14 x (0.2) + 0.4)) + FCD x0.2 0 = 8.4 = FCD 10.2 FCD = 8.4 => FCD = 42KN SM0 = 0 6=-(14x0.4)-FABx0.2m 0 = - (5.6) - FAB x0.2 m 7-5.6 = - FAB x 0.2 m

Civen Data: 1 page # 01 Allowable shearing stress = te 101851 X = 14+16 Required Data: largest Forque Jo= 183 Sol Apply a Static equilibrium analysis on The two shafts to find a relation between Top and - Apply a rinematic analysis to relate the angular rotation of gear's Top ZMB = 0 = F(0.875in)-76 EMC = 0 = F(2.45'im) = TCD TCD = 2-8To C=2.45in MOW YBQB= rcgc $\varphi B = \frac{\gamma_c}{\gamma B} \varphi$ $2.45 \quad \varphi$ 78=0.875 in QC OB = 2.8 pc 7c= 2.45in

12) page #02 ID= 14374 [man = [ABC 10000 = To (0.375in) 4 JAB 10000 = To (0.375in) 4 - 10000 (6.3/64) = To = [827.3] 0.375 $\frac{1}{\sqrt{2000}} = \frac{1}{\sqrt{2000}} = \frac{10000}{\sqrt{2000}} = \frac{10000}{\sqrt{2$ 10000 x0.0981 - 70 = 981.25 - Fouls.in PABC = TABC = (700) (24)

TABC = (700) (24)

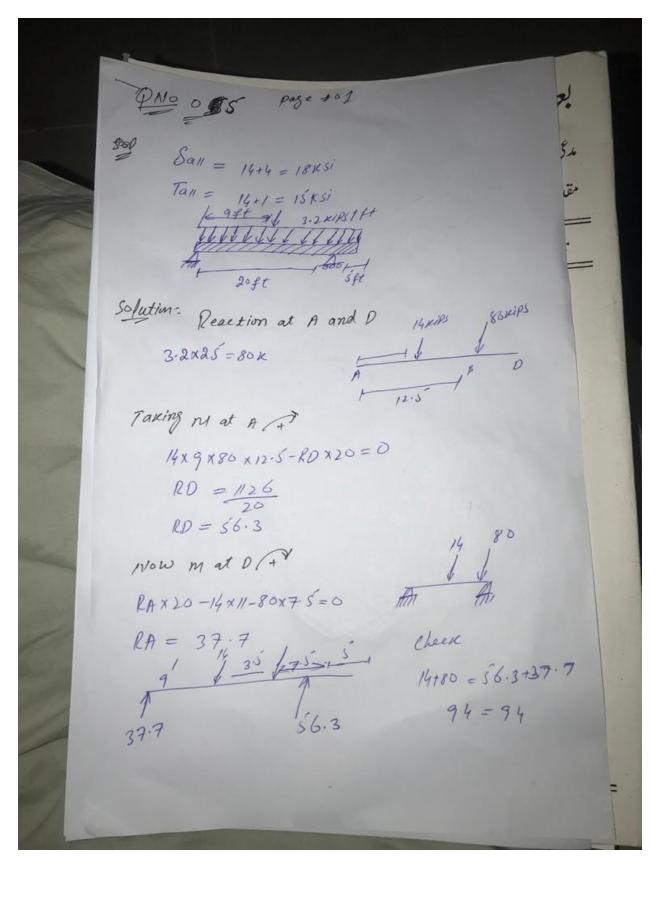
TABC = (16800)

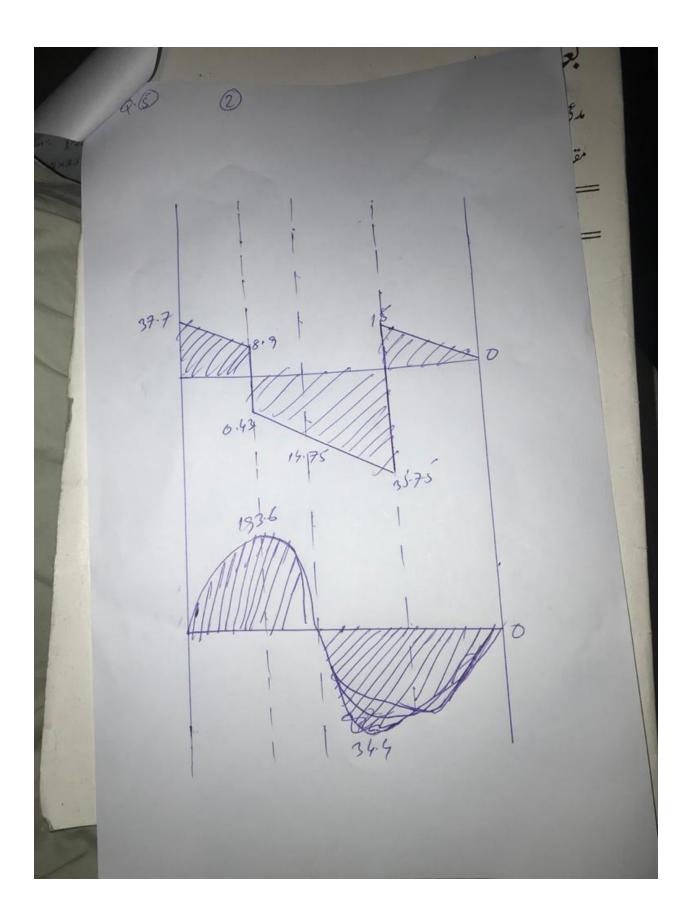
TABC = (16800)

TABC = (16800)

TABC = (16800)

TABC = (16800) 16800 = 91/B = 0.00263 radian QCID = TCDL = 2.8x700x24 47040 JCDG = M/2(0.5in) (24x106) = 1.57x0-0675x94x16 = 47640 = 0.019 radian = 1140 OD = 2-89c = 2.8 × 1.14 = 3.13 2 QA = QB + QA/B = 3-182+1.2 TP = 4.392/


PNO 04 pose #03
$$10 = 14374$$
 $= 4in$
 $h = 6in$
 $t = 0.05in$


Required Data:

Shear stress distribution for $V = ?$

Sol $e = fh$
 $V = f$
 $V = f$

Shear Stress in The flanges. $\overline{\zeta} = \frac{\sqrt{\varphi}}{7t} = \frac{\sqrt{(st)}}{7} \frac{4}{2} = \frac{\sqrt{h}}{2I}$ $\overline{\zeta}_{B} = \frac{\sqrt{h}}{2(\frac{1}{12}t^{\frac{1}{h}})(6b+h)} = \frac{6\sqrt{b}}{4h(6b+h)}$ = 6 (17 kips) (4in) 10.15in) (6in) (6x4inx6in) Shear stress in The web. $\overline{C}_{man} = \frac{vQ}{It} = \frac{v(\frac{1}{8}ht)(46+h)}{12th(66+h)t} = \frac{3v(42+h)}{2th(66+h)t}$ = 3 (Kips) (4 x 4in+ 6in) 2 (6.15in) (6in) (6x6in+6in) = 3 (16+6) (92)= 66 75.6 = [0.873 RIPS] (0.873 RIP/in)

 $| + ve = (37.25 - 8.9) + (9 \times 0.43) + (8.9 \times 9)$ = 193.6 = 193.5 = 203.58

3) (16×5) x 6.43 = 34.4 4) Maximum normal stress = 193.6

5) Max shear = 34.4