Name : Muhammad NOMAN

<mark>Id : 16497</mark>

Program: DPT 2nd

Q 1: Explain "Biomechanics of Articular cartilage "

ANS.... **Biomechanical** Function. **Articular cartilage** is a thin layer of specialized connective tissue with unique viscoelastic properties. Its principal function is to provide a smooth, lubricated surface for low friction articulation and to facilitate the transmission of loads to the underlying subchondral

Function of articular cartilage:

Distributes joint load over a wide area, decreasing the stresses. sustained by the contacting joint surface

- Allow relative movement of the opposing joint surface with minimal friction and wear.
- > Minimize peak stresses on subchondral bone
- > . Surface roll or side during motion
- Provide a friction reducing weight bearing surface with friction coefficient of 0.0025

Function within a contact pressure range 2-11 MPa

TYPE OF CARTILAGE..

Туре	Appearance	Location
Hyaline	Glassy, smooth	Covers long bones, growth
		plates
Fibro	Dense	Inter vertebral disk, meniscus

	Elastic	Yellow, opaque	Epiglottis, eustachian tube.
--	---------	----------------	------------------------------

Biomechanics composition of articular cartilage:

- > Extracellular matrix
- ➢ Proteoglycan (5-10%)
- Collagen (10-20%) type I
- → Water , (68- 85%)

The Martial properties of articular cartilage depend on its extracellular matrix ,but the existence and maintenance of matrix depend on chondrocytes...

Q2...EXPLAIN BIOMECHANICS OF TENDON AND LIGAMENT..

. Introduction of Tendon and ligament :

Tendon :

- > Tendon connect muscle to bone
- > Tendon consists of bundle of collagenous fiber arrange in parallel
- > Origin at muscle, crosses at least one joint and insert in bone
- > Offer greater tensile strength .

<mark>Ligament :</mark>

- Ligament connect bone to bone
- Ligament consist mostly of bundle of elastin molecule formed into elastic fiber with some bundle of collagen.
- > Origins and insert into bone
- > More elastic and flexible than tendon
- > Offer less tensile strength.

Composition :

Component	Ligament	Tendon
Fibroblast	20%	20%
Water	60-80%	60-80%

Solids	20-40%	20-40%
Collagen	70-80%	Slightly higher
Type l	90%	95-99%
Elastin	Up to 2x collagen	Scarce
Ground substance	20-30%	Slightly lesser

Anatomical position of tendon :

Tendon:

- > Tendon contain collagen fibrils Type 1
- > Tendon contain a proteoglycan matrix
- Tendon contain fibroblasts that are arranged in parallel rows Type 1 collagen :
- > 86% of tendon dry weight
- ➢ Glycine (33%)
- > Proline (15%)
- > Hydroxyproline (15%)

Anatomical position of ligament :

- > Similar to tendon in hierarchical structure
- > Collagen fibrils are slightly less in volume fraction
- > Higher percentage of proteoglycan matrix than tendon
- > Fibroblasts

Function:

Tendon :

- > Tendon carry tensile force from muscle to bone
- > They carry compressive force when wrapped around bone like a pulley.
- > They facilities skeletal muscle movement
- Propriception
- Secondary function : storage of energy

Ligament :

> It maintain correct bone and join geometry

- Ligament + associated joint capsule combinely functions as passive joint stabilizer
 Secondary function: proprioception.