

ID :13662 Syed Muhammad salman khan Submitted to : Aasma khan Summer Assigment

Sessional (Summer- 2020) Natural Language Processing

Note: Attempt all Questions. Question No. 1:

(15)

a) Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.

Part of speech tagging is also known as part of speech tags ,lexical categories, word classes morphological classes , lexical tags etc.

The process of assigning a part-of-speech to each word in a sentence.

Example :play well w	vith other.
----------------------	-------------

Play	V
Well	Ad
With	Prep
Other	Ν

Example :

Heat	Verb(noun)
Water	Noun(verb)
In	Prep(noun ,adj)
A	Det (noun)
Large	Adj(noun)
Vessel	noun

b) State difference between open vs. closed classes.

(03)

Open classes : unlimited numbers of words

Open classes allow new members through borrowing (for example, the noun *cafe*) and derivation (for example, the adjective *bounteous* from the noun *bounty*)

Examples : Noun , verb , Adverb , Adjective...

Closed classes: Closed classes of words do not allow new members and usually involve grammatical rather than lexical words

Examples : Auxiliary , Articles, Determine , conjunction , pronoun , interjections...

(02)

c) Apply Viterbi Algorithm on the below given bigram and lexical probabilities; (10)

Initial			Bigram Probabilities				
Probab	Probabilities		Noun	Verb	Other		
Noun	1\3	Noun	1\4	1\4	0		
Verb	0	Verb	1\4	0	1\4		
Other	1\3	Other	1\3	0	1\3		

Lexical Probabilities							
O1=time O2=flies O3=like O4=an O5=arrow							
Noun	1\5	1\5	0	0	1\5		
Verb	1\5	2\5	1\5	0	0		
Other	0	0	1\5	2\5	0		

Lexical probability

	Time	Flies	Like	An	Arrow
Noun	1/5	1/5	0	0	1/5
Verb	1/5	2/5	1/5	0	0
Other	0	0	1/5	2/5	0

	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
Noun	1/2*1/	1/2.1/5.1/3.1/5=1/15	0	0	1/3750.1/3.1/5=1/56250
	5	0			0
Verb	0	1/2.1/5.1/3.2/5=1/75	1/75.1/3.1/5=1/112 5	0	0
Othe r	0	0	1/75.1/5.1/2=1/750	1/750.1/2.2/5=1/375 0	0

Times = Noun Flies = Verb Like = Other

Question No. 2:

(05)

Apply Bayesian theorem over the below given string:

^John got many NLP books. ^He found them all very interesting.

Where for lexical probabilities assume John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.

^John	Got	Many	Nlp	Books .	^he	Found	Them	Very	Interesting.
NN	VB	А	N	Ν	N	V	Ν	R	А

	٨	Ν	V	\mathbf{A}	R	•
^	0	2	0	0	0	0
Ν	0	1	2	0	1	1
V	0	1	0	1	0	0
Α	0	1	0	0	0	1
R	0	0	0	1	0	0
•	1	0	0	0	0	0

STEP NO 3:

	^	Ν	V	Α	R	
^	0	2/2=1	0	0	0	0
Ν	1	1/5	2/5	0	1/5	1/5
V	0	1/2	0	1/2	0	0
Α	0	1/2	0	0	0	1/2
R	0	0	0	1/1=1	0	0
•	1/2	0	0	0	0	0

	0.5	0.3	0.2	0.1	0.6
	JOHN	GOT	MANY	NLP	BOOKS
^	0.5	0.3	0.2	0.1	0.6
Ν	0.5	0.3	0.2	0.1	0.6
V	0.5	0.3	0.2	0.1	0.6
\mathbf{A}	0.5	0.3	0.2	0.1	0.6
R	0.5	0.3	0.2	0.1	0.6
•	0.5	0.3	0.2	0.1	0.6

P(JOHN/^) JOHN*^=0.5*2/2=0.5 P(GOT/^) GOT*^ = 0.3*2/2= 0.3 P(MANY/^)MANY*^ = 0.2 *2/2=0.2 P(NLP/^)NLP*^=0.1*2/2=0.1 P(BOOKS/^)BOOKS*^ = 0.6 *2/2=0.6 P(john/N)JOHN*N=0.5*5/5=0.5 and so on...

Good Luck 😊