Syed Muhammad salman khan

Submitted to : Aasma khan

Summer Assigment

Sessional (Summer- 2020)
Natural Language Processing

Note: Attempt all Questions.
Question No. 1:
a) Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.
Part of speech tagging is also known as part of speech tags , lexical categories, word classes morphological classes, lexical tags etc.
The process of assigning a part-of-speech to each word in a sentence.
Example :play well with other.

Play	V
Well	Ad
With	Prep
Other	N

Example:

Heat	Verb(noun)
Water	Noun(verb)
In	Prep(noun ,adj)
A	Det (noun)
Large	Adj(noun)
Vessel	noun

b) State difference between open vs. closed classes.

Open classes : unlimited numbers of words
Open classes allow new members through borrowing (for example, the noun cafe) and derivation (for example, the adjective bounteous from the noun bounty)

Examples: Noun , verb,Adverb, Adjective...
Closed classes: Closed classes of words do not allow new members and usually involve grammatical rather than lexical words

Examples : Auxiliary, Articles, Determine ,conjunction, pronoun ,interjections...
(02)
c) Apply Viterbi Algorithm on the below given bigram and lexical probabilities;

Initial Probabilities						
Noun	$1 \backslash 3$					
Verb	0					
Other	$1 \backslash 3$		Bigram Probabilities			
:---	:---	:---	:---			
Noun	$1 \backslash 4$	$1 \backslash 4$	0			
Verb	$1 \backslash 4$	0	$1 \backslash 4$			
Other	$1 \backslash 3$	0	$1 \backslash 3$			

Lexical Probabilities						
	O1=time	O2=flies	O3=like	O4=an	O5=arrow	
Noun	$1 \backslash 5$	$1 \backslash 5$	0	0	$1 \backslash 5$	
Verb	$1 \backslash 5$	$2 \backslash 5$	$1 \backslash 5$	0	0	
Other	0	0	$1 \backslash 5$	$2 \backslash 5$	0	

Lexical probability

	Time	Flies	Like	An	Arrow
Noun	$1 / 5$	$1 / 5$	0	0	$1 / 5$
Verb	$1 / 5$	$2 / 5$	$1 / 5$	0	0
Other	0	0	$1 / 5$	$2 / 5$	0

	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
Noun	$1 / 2^{*} 1 /$ 5	$1 / 2.1 / 5.1 / 3.1 / 5=1 / 15$ 0	0	0	$1 / 3750.1 / 3.1 / 5=1 / 56250$ 0
Verb	0	$1 / 2.1 / 5.1 / 3.2 / 5=1 / 75$	$1 / 75.1 / 3.1 / 5=1 / 112$ 5	0	0
Othe r	0	0	$1 / 75.1 / 5.1 / 2=1 / 750$	$1 / 750.1 / 2.2 / 5=1 / 375$ 0	0

Times $=$ Noun
Flies $=$ Verb
Like $=$ Other
Question No. 2:
(05)

Apply Bayesian theorem over the below given string:
$\wedge J o h n$ got many NLP books. ${ }^{\wedge} \mathrm{He}$ found them all very interesting.
Where for lexical probabilities assume John $=0.5$, got $=0.3$, many $=0.2, N L P=0.1$ and books $=0$.

^John	Got	Many	Nlp	Books .	^he	Found	Them	Very	Interesting.
NN	VB	A	N	N	N	V	N	R	A

	\wedge	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	\cdot
\wedge	0	2	0	0	0	0
\mathbf{N}	0	1	2	0	1	1
\mathbf{V}	0	1	0	1	0	0
\mathbf{A}	0	1	0	0	0	1
\mathbf{R}	0	0	0	1	0	0
\cdot	1	0	0	0	0	0

STEP NO 3:

	\wedge	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	\cdot
\wedge	0	$2 / 2=1$	0	0	0	0
\mathbf{N}	1	$1 / 5$	$2 / 5$	0	$1 / 5$	$1 / 5$
V	0	$1 / 2$	0	$1 / 2$	0	0
A	0	$1 / 2$	0	0	0	$1 / 2$
R	0	0	0	$1 / 1=1$	0	0
.	$1 / 2$	0	0	0	0	0

	0.5	0.3	0.2	0.1	0.6
	JOHN	GOT	MANY	NLP	BOOKS
\wedge	0.5	0.3	0.2	0.1	0.6
N	0.5	0.3	0.2	0.1	0.6
V	0.5	0.3	0.2	0.1	0.6
A	0.5	0.3	0.2	0.1	0.6
R	0.5	0.3	0.2	0.1	0.6
\cdot	0.5	0.3	0.2	0.1	0.6

$\mathrm{P}(\mathrm{JOHN} / \wedge) \mathrm{JOHN} * \wedge=0.5 * 2 / 2=0.5$
$\mathrm{P}(\mathrm{GOT} / \wedge) \mathrm{GOT}^{* \wedge}=0.3 * 2 / 2=0.3$
P(MANY/^)MANY*^ $=0.2$ * $2 / 2=0.2$
$\mathrm{P}(\mathrm{NLP} / \wedge) \mathrm{NLP}^{*} \wedge=0.1^{*} 2 / 2=0.1$
$\mathrm{P}(\mathrm{BOOKS} / \wedge)$ BOOKS ${ }^{* \wedge}=0.6 * 2 / 2=0.6$
P(john/N)JOHN*N=0.5*5/5=0.5
and so on...

Good Luck ©

