Construction Financial Management Assignment

Problem 1: A construction company will replace an excavator after 5 years. A new one costs \$250,000. How much is the end-of-year annual uniform payment the company has to put into a bank in order to save enough money in five years' time for purchasing the equipment if the bank is offering an interest rate of 4% per annum?

Solution 1:

Principal amount = S = \$250,000Number of periods = n = 5Interest rate in % per period (nominal or apparent rate) = i = 4% = 0.04Annual uniform payment = A = ?

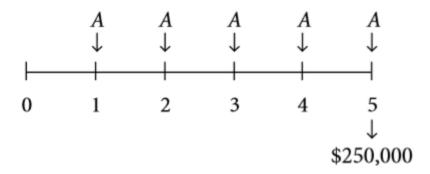


Fig. 1. – Sum of \$250000 accumulated by five uniform periodic (annual) payments.

Using Formula:

Therefore Annual uniform payment is \$ 46157.

Problem 2: A construction material company makes and sells window panels. The selling price per panel is \$900. The variable cost for making the window panels is \$500 per unit. The fixed cost is \$8,000,000. Find the BEP (break-even point)?

Solution

Given Data:

Selling Price per unit = p = \$900Variable cost per unit = v = \$500Fixed Cost = FC = \$8,000,000Break-even point = BEP = ?Number of units = x

a) The above problem can be solved using the following table:

Cost-volume-profit analysis (or Break-even analysis)				
Volume	x=18000	x=20000	x=22000	x=25000
Total Revenue	16200000	18000000	19800000	22500000
Variable Cost	9000000	10000000	11000000	12500000
Fixed Cost	8000000	8000000	8000000	8000000
Total Cost	17000000	18000000	19000000	20500000
Net Income	-800000	0	800000	2000000
	Loss	BEP	Profit	

At x = 20000, the company is at BEP that is the company is neither making profit nor making loss. The company has to increase its production capacity more than BEP = 20000 in order to gain profit. Production less than 20000 units would be a loss to the company. Assuming maximum capacity of the company as 25000 units then the company's maximum profit is \$ 2,000,000.

BEP % = [BEP/Maximum Capacity] x 100

BEP $\% = (20000/25000) \times 100$

BEP % = 80%

b) Mathematical Presentation:

TR = a + b + c + Profit $Total\ Cost\ (TC) = Variable\ Cost\ (VC) + Fixed\ Cost\ (FC)$ Where as $TR = total\ revenue$ $a = Direct\ cost$ $b = Cost\ of\ administering\ the\ company$ $c = Costs\ of\ marketing/advertisements$

At break-even point (BEP)

$$TR = a + b + c$$
 $TR = TC$
 $TR = px$
 $TC = VC + FC$
 $TC = vx + FC$
 $TC = vx + FC$
 $TC = vx + FC$
Hence, at BEP, $x = FC/(p - v)$
 (c)

Putting the values in equation (c)

x = 8000000/(900-500) x = 8000000/400 x = 20000 units Therefore Break-even point (BEP) = 20000 units Let x = 18000, 20000 and 22000

Graphical presentation – Break-even chart:

The Break-even is a graphical presentation of TR, VC, FC and TC. The Fig.2 below shows the break-even chart of problem 2.

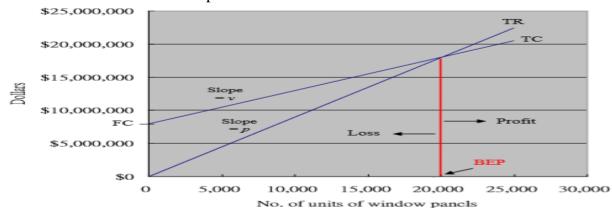


Fig. 2. - The break-even chart for