

Sessional Assignment
Course: - Distributed Computing

Deadline: - Mentioned on SIC Marks: - 20

Program: - MS (CS) Dated: 15 May 2020

Student Name: AQEEL KHAN Student ID#: 5953

Class and Section MS CS

Question: Assume you have a Client Server Environment in which the client request the

server to multiply three given number i.e 67, 90, 34, and return the result.

Discuss the steps of the system in each of the following scenarios.

a) How the Request-Reply Protocols functions will be used with UDP (refer to figure

5.3 in book), how will be the message identifiers used, what will be its failure model,

how time outs will be used, how will the system handle duplicate messages and how

will the system react if reply is lost. (8)

 Answer : UDP provides simple datagram delivery to remote sockets, that is, to ⟨host, port⟩
pairs. TCP provides a much richer functionality for sending data, but requires that the remote

socket first be connected. In this chapter, we start with the much-simpler UDP, including the

UDP-based Trivial File Transfer Protocol. UDP is unreliable, in that there is no UDP-layer

attempt at timeouts, acknowledgment and retransmission; applications written for UDP must

implement these. As with TCP, a UDP ⟨host, port⟩ pair is known as a socket (though UDP ports

are considered a separate namespace from TCP ports). UDP is also unconnected, or stateless; if

an application has opened a port on a host, any other host on the Internet may deliver packets to

that ⟨host, port⟩ socket without preliminary negotiation.

Examples of UDP

include Voice over IP (VoIP), online games, and media streaming. Speed – UDP's speed makes

it useful for query-response protocols such as DNS, in which data packets are small and

transactional.

• HOW will the system handle duplicate messages and how will the system react if

reply is lost.

It developing a protocol over UDP to be used in a local network, there will be only a switch

(Cisco, 3com, etc) between source and destination, both Linux systems, same MTU. How often

should I expect udp packets to be duplicated (obviously not by me but by the switch or maybe

the server) at the destination in this case? I need this to know if to implement a duplication check

in my code or not.

b) How can the above system implemented using Remote Procedure Calls (RPC)?

(Hint: Read Section 5.3.2 in the book). (6)

 Answer : Remote Procedure Call (RPC) is a powerful technique for

constructing distributed, client-server based applications. It is based on extending the

conventional local procedure calling so that the called procedure need not exist in the same

address space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them.

 RPC Works. An RPC is analogous to a function call. Like a function call, when an RPC is

made, the calling arguments are passed to the remote procedure and the caller waits for a

response to be returned from the remote procedure. ... The client makes a procedure call that

sends a request to the server and waits

c) How can the above system implemented using Remote Method Invocation (RMI)?

(Hint: Read Section 5.4.2 in the book). (6)

 Answer : RMI is used when we have to invoke methods from distance on remote objects

(these objects are located on other systems). RMI is very limited (is the single thing which is able

to do it) and it give us a platform-independent understanding. When we start to use RMI, the

programming of streams and sockets disappear. By having the objects remotely stored

somewhere, the access to them becomes very transparent for the programmer. I would like to

mention from start that the article is for those (students and not only) who wish to understand the

basic principles of accessing objects remotely. The examples from here are based on original.

• Package is used for remote method invocation RMI

RMI creates a public remote server object that enables client and server side communications

packages through simple method calls on the server object. The communication packages

between client and server is handled by using two intermediate objects: Stub object (on client

side) and Skeleton object.

