Department of Electrical Engineering

Assignment
Date: 14/04/2020
Course Details

Course Title:	Electric Power Transmission
Instructor:	Eng Amir Aman

Module:	$4 r$ th
Total Marks:	30

Student Details

Name: Salman Farooq Student ID: 15276

Q1	(a)	In a 66 kV overhead line, there are three units in the string of insulators. If the capacitance between each insulator pin and earth is 22% of self-capacitance of each insulator, Find i) The distribution of voltage over 3 insulators and ii) String efficiency.	Marks 05
	(b)	A 3-phase line has conductors 4 cm in diameter spaced equilaterally 2 m apart. If the dielectric strength of air is 60 kV (max) per cm . Find the disruptive critical voltage for the line. Take air density factor $\delta=1.5$ and irregularity factor $\mathrm{mo}=0 \cdot 6$.	Marks
			CLO 1
Q2	(a)	An overhead transmission line conductor having a parabolic configuration weighs 3.789 kg per meter of length. The area of X -section of the conductor is $6.2 \mathrm{~cm}^{2}$ and the ultimate strength is $950.665 \mathrm{~kg} / \mathrm{cm}^{2}$. The supports are 300 m apart having 25 m difference of levels. Calculate the sag from the taller of the two supports which must be allowed so that the factor of safety shall be 2 . Assume that ice load is 2 kg per meter run and there is no wind pressure.	Marks
			CLO 1
Q3	(a)	A transmission line has a span of 400 meters between level supports. The conductor has a cross-sectional area of 2.34 cm 2 , weighs $70 \mathrm{~kg} / \mathrm{km}$ and has a breaking stress of $42 \mathrm{~kg} / \mathrm{cm}^{2}$. Calculate the sag for a safety factor of 6 , allowing a wind pressure of 522 kg per square meter of projected area. What is the vertical sag?	Marks 05
			CLO 2
	(b)	The towers of height 60 m and 120 m respectively support a transmission line conductor at water crossing. The horizontal distance between the towers is 800 m . If the tension in the conductor is 400 kg , Find the minimum clearance of the conductor and water and clearance midway between the supports. Weight of conductor is $3.5 \mathrm{~kg} / \mathrm{m}$. Bases of the towers can be considered to be at water level.	Marks 05
			CLO 2

Question NO: 1 Part (A)
In a 86 kv overhead line there are the three Unit in the String of insulation. If the capacitance between each insulator P in and earth is 22% of self capacitance of each insulator. Find
i) The Distribution of voltage over 3 insulator
ii) String efficincy.

Diagram of overhead Line There are three Unit in the String of Insulator.

Solution
we know that the above circuit diagram show that ' C ' is the self Capacitance and $k c$ is the shunt Capacitance. ' v ') is the Total voltage and v_{1}, v_{2}, v_{3} is a across voltage from top to Bottom.

First we find the value of ' K ' Page (2)

$$
\begin{gathered}
k=\frac{\text { Shunt capacitance }}{\text { Self capacitance }} \\
k=22 \% \quad 0.22 \\
k=0.22
\end{gathered}
$$

Voltag across the string

$$
v=\frac{66 \mathrm{kv}}{\sqrt{3}} \Rightarrow v=38.10 \mathrm{kv}
$$

$\Rightarrow A+$ junction ' A '

$$
\Rightarrow \begin{aligned}
\Rightarrow I_{2} & =I_{1}+i_{1} \\
V_{2} \omega c & =v_{1} \omega c+v_{1} k \omega c \\
V_{2} \omega c & =V_{1} \omega c+v_{1} k \omega c \\
V_{2} u_{c} & =v_{1} w_{c}(1+k) \\
V_{2} & =v_{1}(1+k) \Rightarrow \text { Putting of ' } k \text { ' } \\
V_{2} & =V_{1}(1+0.22) \text { The value } \\
V_{2} & =1.22 V_{1}
\end{aligned}
$$

$\Rightarrow A+$ junction ' B '

$$
\begin{aligned}
& I_{3}=I_{2}+i_{2} \\
& V_{3} w_{c}=V_{2} w_{c}+\left(v_{1}+v_{2}\right) k w_{c} \\
& V_{3}=V_{2}+\left(V_{1}+V_{2}\right) k \quad \Rightarrow
\end{aligned}
$$

page (3)
putting value in above equation (ii)

$$
\begin{gathered}
v_{3}=1.22 v_{1}+\left(v_{1}+1.22 v_{1}\right) 0.22 \\
v_{3}=1.7084 v_{1}
\end{gathered}
$$

Next voltage across the whale string

$$
\begin{equation*}
v=v_{1}+v_{2}+v_{3} \tag{iii}
\end{equation*}
$$

Putting the value of v_{2} and v_{3} - in above equation (iii)

Now

$$
\begin{aligned}
& v=v_{1}+1.22 v_{1}+1.7084 v_{1} \\
& 38.10=3.9284 v_{1} \\
& v_{1}=\frac{38.10}{3.9284}=v_{1}=9.698 \mathrm{kv}
\end{aligned}
$$

So $\quad v_{2}=1.22 v, \quad v_{2}=1.22 \times 9.698$

$$
V_{2}=11.831 \mathrm{kV}
$$

Next $\quad V_{3}=1.7084 V_{1}$ Putting the value of

$$
\begin{gathered}
V_{3}=1.7084 \times 9.698 \\
V_{3}=16.54 \mathrm{kV}
\end{gathered}
$$

page (4)
Second Find string Efficiency.
we know that

$$
=\frac{\text { voltage across string }}{\text { No of insulator } X V_{3}} \times 100
$$

Putting value

$$
\begin{aligned}
& \Rightarrow \frac{38.10}{3 \times 16.54} \times 100 \\
& \Rightarrow \frac{38.10}{49.62} \times 100 \\
& =76.78 \%
\end{aligned}
$$

Question NO 1
Part B
A 3 phase Line has conductors 4 cm in diameter spaced equilaterally 2 m apart if the dielectric strength of air is 60 kv (max) Per cm. Find the distutive critical Voltag for the Line. Take air density factor $\delta=1.5$ and irregularity factor mo $=0.6$

Given dater:,
Diameter of conductor $=4 \mathrm{~cm}$
Dielectric strength of $a i r=60 \mathrm{kv} / \mathrm{cm}$
Conductor spacing $=2 \mathrm{~m}$
Air density factor $=\delta=1.5$
Irregularity factor $m_{0}=0.6$
Required data
Disruptive Critical voltag $v_{c}=$?

Solution
First convert conductor spacing matter to
C_{m}.

$$
2 \mathrm{~m}=0.02 \mathrm{~cm}
$$

Now
we know that

$$
\Rightarrow \quad v_{e}=m_{0} g_{0} \delta_{r} \log _{e}(d / r) \mathrm{Kv} / \text { phase } \quad \text { (rims value) }
$$

Racluis of Conductor is

$$
r=4 \mathrm{~cm} / 2=2 \mathrm{~cm}
$$

Putting value in above equation.

$$
\begin{aligned}
& 0.6 \times 42.4 \times 1.5 \times 2 \times \log 0.02 / 2 \\
& =\quad 353.46 \mathrm{kV} / \text { phase }
\end{aligned}
$$

Line voltage (rms)

$$
=\sqrt{3 \times 353.46}=612.21 \mathrm{kV}
$$

Question NO 2

Given delta

$$
\begin{aligned}
& w=3.789 \mathrm{~kg} / \mathrm{m} \\
& h=25 \mathrm{~m} \\
& L=300 \mathrm{~m}
\end{aligned}
$$

Ultimate string $=950.665 \mathrm{~kg} / \mathrm{cm}^{2}$

$$
\omega_{i}=2 \mathrm{~kg} / \mathrm{m}
$$

Safety factor $=2$
X-Section area of conductor $=6.2 \mathrm{~cm}^{2}$
Required data
Calculate Say from that the taller of two Support.

Diagram (A)

The above Diagram (A) show that the Conductor Suspended between two Supports A and B at different Level and 'O' is the lowest on the Conductor.
Solution
First we Find working tention (T)
Here $T=\frac{\text { Ultimate } \text { Streugg } t \times \text { cross Section }}{\text { Softy factor }}$

Now

$$
\begin{aligned}
& T=\frac{950.665 \times 6.2}{2} \\
& T=\frac{5894.123}{2} \Rightarrow T=2947.00 \mathrm{~kg}
\end{aligned}
$$

$$
\omega t=\omega+w_{i} \quad \text { Total weight of }
$$

wt $=3.789+2 \Leftarrow$ length of conductor

$$
\omega t=5.789 \mathrm{~kg}
$$

' O ' is the Lowest point Let x_{2} distance From the Support of higher reval and X, distance from the Support of Lower Level.

Let

$$
\begin{aligned}
& h=S_{2}-S_{1} \\
& h=\frac{w \cdot x_{2}^{2}}{2 T}=\frac{w+r_{1}^{2}}{2 T} \\
& h=\frac{w t}{2 T}\left(x_{2}^{2}-x_{1}^{2}\right) \\
& \frac{2 T \times h}{w t\left(x_{2}+x_{1}\right)}=x_{2} \cdot x_{1} \\
& \Rightarrow \quad x_{2}-x_{1}=\frac{2 \times T x h}{w t \times\left(r_{2}+x_{1}\right)}
\end{aligned}
$$

Putting value

$$
\begin{aligned}
& \frac{2 \times 2947.06 \times 25}{5.789 \times 300} \\
x_{2}-x_{1} & =\frac{147353}{17367} \\
x_{2}-x_{1}= & 84.84 \mathrm{~m} \Rightarrow 2
\end{aligned}
$$

compare equation 1) and (2) and fined the value x_{1} aud x_{2}
So $x_{1}+x_{2}=300 \mathrm{~m}$

$$
\begin{aligned}
-x_{1}+x_{2} & =84.84 \mathrm{~m} \\
\frac{x \times 2}{2} & =\frac{384.84}{2}
\end{aligned}
$$

$$
x_{2}=192.42 \mathrm{~m}
$$

Put the value of x_{2} or above value in equation (1). and get x_{1} value

$$
\begin{aligned}
& x_{1}+x_{2}=300 \\
& x_{1}+192.42=300 \\
& x_{1}=300-192.42 \\
& x_{1}=107.58 \mathrm{~m}
\end{aligned}
$$

Next we know that

$$
S=\frac{w t x_{2}^{2}}{2 T}=C
$$

Sag from the taller of two tower

$$
\begin{aligned}
& S=\frac{w t x_{2}^{2}}{27} \Rightarrow \text { putting the value } \\
& S=\frac{5.789 \times(192.42)^{2}}{2 \times 2947.06} \\
& S=\frac{5.780 \times 3.7025 .45}{5894.12} \\
& S=\frac{214340.36}{5894.12} \\
& S=36.36 \mathrm{~m}
\end{aligned}
$$

page (11)
Question No 3 Dart A

Give data

$$
\begin{aligned}
& \text { Weight }=70 \mathrm{~kg} / \mathrm{km} \quad 0.07 \mathrm{~kg} \\
& \text { Lerigtk of } \mathrm{span}=400 \mathrm{~m}
\end{aligned}
$$

X-Section area of Conductor $=2.34 \mathrm{~cm}^{2}$
Softy factor $=6$
Breaking stress $=42 \mathrm{~kg} / \mathrm{cm}^{2}$
Pressure of wind $=522 \mathrm{~kg} / \mathrm{m}^{2}$
Find vertical say $=$?
Solution
First we Find ' T ',
Now $T=\frac{\text { Breaking stress } \times \text { Cross-sectionel area of conductor }}{\text { S }}$ Salty factor
\Rightarrow Putting value

$$
T=\frac{42 \mathrm{~kg} / \mathrm{cm}^{2} \times 2.34 \mathrm{~cm}^{2}}{6}
$$

Page $=18$

$$
T=\frac{98.28}{6}=T=16.38 \mathrm{~kg}
$$

Next we Find. Diameter of Conductor ' d '
Now. $d=\frac{\sqrt{4 \times \text { area }}}{x}$ putting value

$$
\begin{aligned}
& d=\sqrt{\frac{4 \times 2.34}{3.14}} \\
& d=\sqrt{2.98}=d=1.726 \mathrm{~cm}
\end{aligned}
$$

So wind force $/ m$ length $=$ pressure \times projected area

$$
\begin{aligned}
\omega_{w} & =522 \mathrm{~kg} / \mathrm{m}^{2} \times\left(1.726 \times 10^{-2} \times 1\right) \\
\omega_{w} & =9 \mathrm{~kg}
\end{aligned}
$$

Total weight of Conductor per meter
Lough

$$
\begin{aligned}
& \omega_{t}=\sqrt{\omega_{2}+w_{n}^{2}} \quad \text { Putting value } \\
& \omega_{t}=\sqrt{(0.07)^{2}+(9)^{2}} \\
& \omega_{t}=\sqrt{0.0049+81} \\
& \omega_{t}=9 \mathrm{~kg}
\end{aligned}
$$

Now

$$
S=\frac{w t e^{2}}{8 t}=\frac{9 \times(400)^{2}}{8 \times 16.38}
$$

paten (13)

$$
\begin{aligned}
& S=\frac{9 \times 160,000}{131.04} \\
& S=\frac{1440,00}{131.04}=S=10989.01 \mathrm{~m}
\end{aligned}
$$

Now we know that the value of is given

$$
\begin{aligned}
& (x)=\tan ^{-1}\left(\frac{\omega w}{\omega}\right) \\
& 0=\tan ^{-1}(9 / 0.07) \\
& \quad \tan ^{-1}(128.5)=(20=89.554
\end{aligned}
$$

$$
\text { vertical say }=3 \cos \theta
$$

vertical bug $=5 \times \cos (89.5541)$ putting the value af

$$
\begin{aligned}
& =10989.01 \cos (89.5541 \\
& =1098.01 \times 0.00785
\end{aligned}
$$

vertical sag $=86.2966 \mathrm{~m}$

Question NO Page (14)
part B
Given data:
weight of Conductor $=3.5 \mathrm{ky} / \mathrm{m}$
hight $h=120 m-60 m=6 \mathrm{~m}$

$$
\begin{aligned}
& \text { Tension } T=400 \mathrm{~kg} . \\
& \text { Cengath }=800 \mathrm{~m}
\end{aligned}
$$

Find minimom Clearance of the Conductor aud wetter and Cleavence mid-way between the Support.

Solution
we Knows that 'OD' is the convert point on the conductor at a distance x, from the support at cover level and distance X_{2} from

The Support of higher level. and the Conductor Show that Susprucled between two Support A and B.

Let $43 \Rightarrow$

$$
\begin{gather*}
x_{1}+x_{2}=800 m \tag{A}\\
n=S_{2}-\rho_{1} \\
h=\frac{\omega x_{2}}{2 T}-\frac{\omega x_{1}^{2}}{2 T} \\
h=\frac{\omega}{2 T}\left(x_{2}^{2}-x_{1}^{2}\right) \\
h=\frac{\omega}{2 T}\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right) \\
\frac{2 T h}{w\left(x_{2}+x_{1}\right)}=x_{2}-x_{1} \\
x_{2}-x_{1}=\frac{2 \times T \times h}{\omega \times\left(x_{2}+x_{1}\right)}
\end{gather*}
$$

So

$$
\begin{align*}
& x_{2}-x_{1}=\frac{2 \times 400 \times 60}{3.5 \times 800} \\
& x_{2}-x_{1}=\frac{48000}{2800} \\
& x_{2}-x_{1}=17.14 \mathrm{~m} \longrightarrow
\end{align*}
$$

Now we Compare the value of. equation ' A ' and B and get the value of x_{1} and x_{2}

$$
\begin{aligned}
x_{1}+x_{2} & =800^{m} \\
-x_{1}+x_{2} & =17.14 \\
2 x^{2} & =817.14
\end{aligned}
$$

divided bott Side by 2

$$
\begin{aligned}
\frac{2 x^{2}}{2} & =\frac{817.14}{2} \\
x^{2} & =408.57 \mathrm{~m}
\end{aligned}
$$

(17) Next pet the value of x^{2} in equation
page (A) and get the value of x,

$$
\begin{aligned}
& x_{1}+x_{2}=800 \\
& x_{1}+408.57=800 \\
& x_{1}=800-408.57 \\
& x_{1}=391.43 \mathrm{~m}
\end{aligned}
$$

So

$$
\begin{aligned}
& S_{1}=\frac{\omega x_{1}^{2}}{2 T} \Rightarrow S_{1}=\frac{3.5 \times(391.45)^{2}}{2 \times 400} \\
& S_{1}=\frac{3.5 \times 153217.44}{800} \\
& S_{1}=\frac{536261.04}{800} \\
& S_{1}=670.32 \mathrm{~m}
\end{aligned}
$$

if that: Now clearance of the lowest point ' 0 ' From water level.

$$
\begin{aligned}
& =60.670 .32 \\
& =-610.32 \mathrm{~m}
\end{aligned}
$$

Next \Rightarrow let the mid point of 'p' be at a distance x from the lowest point (c)

$$
\begin{aligned}
& x=400-x_{1} \\
& x=400-391.43 \\
& x=8.57 \mathrm{~m}
\end{aligned}
$$

Wat the sag at mid point p

$$
\begin{aligned}
P & =\frac{\omega x^{2}}{2 T} \rightarrow Q^{2} \\
& =\frac{3.5 \times(3.57)^{2}}{2 \times 400} \\
& =\frac{3.5 \times 73.44}{800} \\
\text { Sid } P & =0.3213 \mathrm{~m}
\end{aligned}
$$

page Clearance of mid point ' p ' from water level.

$$
\begin{aligned}
& =-610.32+0.3213 \\
& =-609.9 \mathrm{~m}
\end{aligned}
$$

