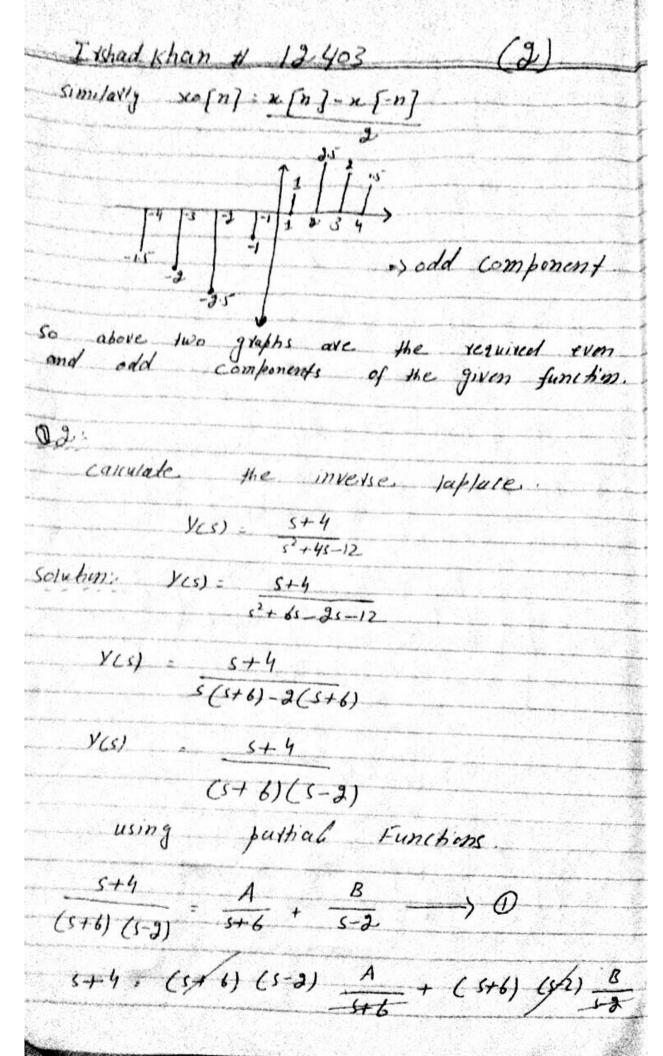
Department of Electrical Engineering

Sessional Assignment Date: 05/05/2020

Course Details


Course Title:Signals & SystemsModule:04Instructor:Engr Mujtaba IhsanTotal Marks:20

Student Details

Name: Irshad Khan Student ID: 12403

Q1.		Evaluate the even and odd components for the given function.	Marks
		5	05
		1 4 3 x[n] 1 n	CLO 1
		1 2 3 4	
Q2.		Calculate the inverse Laplace transform of the given equation.	Marks
			07
		$Y(s) = \frac{s+4}{s^2 + 4s - 12}$	CLO 3
Q3.	i.	Discuss the procedure of converting an analog signal into a digital one.	Marks
	ii.	Suppose an analog signal has a highest frequency of 60Hz. Outline the steps that will	02+02
		ensure that no aliasing occurs.	CLO 2
Q4.		Show that:	Marks
		$x[n] * [h_1[n] * h_2[n]] = [x[n] * h_1[n]] * h_2[n]$	04
			CLO 2

Assignment, signal and system
Ixtual Khan ID#12403 (1)
21: Evaluate the even and odd
] [] [n]
solution; As we know that
for even component, xe(h) = x(h) + x(-h)
For odd component, xo(h): x(h)-x(-h)
=> xe(t)= \frac{1}{2} \left[x(h) + x(-h) \right]
:> 20(1) = = {x(h) - x(-h)}
First to determine $x(-h)$ $ \int_{-1}^{2} \int_{3}^{3} \frac{1}{4} x(t) = \int_{-4}^{3} \int_{-3}^{4} \int_{-4}^{2} \int_{-3}^{2} \frac{1}{4} x(t) $
To obtain xe we need to half the
amplifudes as so, xe(n) can be drawn
$xe[n]: \dot{x}(n] + \kappa(-n)$
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$

Total khim #
$$|3403$$
 (3)
 $s+4$... $A(s-2) + 8(s+6)$
 fox s ... 2
 $3+4$... $A(3) + 8(3+6)$
 $6=88$... $8=4/8_q=>[8=3/4] \longrightarrow (2)$
 for $s=-6$
 $3=6+4=A(-6-2)+8(-6-6)$
 $+2=48A=>A=3/2=>[A=\frac{1}{4}] \longrightarrow (3)$
 pul @ and c_2 @ in O .
 $s+4=\frac{1}{(s+6)(s-3)} = \frac{3}{4(s+6)} + \frac{3}{4(s-3)}$
 so $y(s): \frac{1}{4(s+6)} + \frac{3}{4(s-3)}$
 $Applying$ L^3 on $8:H:s$.
 $L'(y(s)) = L'(\frac{1}{4}: \frac{1}{5+6}) + L'(\frac{3}{4}: \frac{1}{5-2})$
 $y(t) = \frac{1}{4}(L'; \frac{1}{5+6}) + \frac{3}{4}L'(\frac{1}{5-2})$
 $y(t) = \frac{1}{4}(L'; \frac{1}{5+6}) + \frac{3}{4}L'(\frac{1}{5-2})$

I whad Khan # 12403 (4)
-03. Conveyning
Ans: converting any analog signal into a digital signal requires three processes of use can
1 Sampling
O Coding Fitst an analog signal which is Continious
to disclete time continious amplitude and
placess is called sumpling. Then through quantization the obtained
is converted into disclete time and
tepresented values. Then Grave House coding the obtained
finite value are given binary codes as zeros and ones to explicity obtained
the final digital output:
(ii) no aliasing occurs? Ans: As the highest frequency
and we require to ensure there is
no aliasing, so we need to apply ryquist yate: Fri & dx Fmare
FN 3 120 HZ

14thed Khun # 124032 so by keeping the samping tale could or above 130 Hz we can ensure that there will no aliasing occur 0 4: Show that x [n] * [h1[n] * h2[n]: [n[n] * h1[n]) * [hz[n] Solution: Taking R. H.S & let n=K [x[k] * hi[k] * hi[k] as [x[x] * hs[x]] can be obtained by (by mulhplying x [x] & bi [x]) as. [x[k] * hi[k]: [& x[m] hi[k m)] so R. H. S be come s. [n [k] * h1[k]] * h2 [k] : [& n [m] h1[k-m]] * hz [x]. NOW again the stay sign indicated and they convolution sum blue £ κ {m}h 1 [k-m] 4 h2 [k]. So, & [& x (m] h, [n-m]) hz (10-n) = E E x [m] h 1 [n-m] h 2 [K-n]

Itshed Khan # 12403 we can reallange the summations as Ex[m] & hi[n-m] h2 [x-h] Now let K-n=Y so now substitute in by K-Y. Ex[m] & hi[K-4-m] hz[Y] = E x[m] (E h) [x] h, [x-m]-Y] As & h2 [4] h1 [(K-m)-4] = h2 (m] *h1[x-m] using commutative projetly and time shift property let 2(K) = hi[K] + hz (K) honce hz (m) * h 1 [k-m] = h 1 [k-m] * hz [m]: Z [k-m] NOW E x[m] 2 [k-m] = x[x] * 2[x] put the value of & (K) = x[x] * h1[x] * h2[x]] is count to Hence proved: