

Name: Danyal Ahmad
Class: BSSE
Course: Software Verification
and Validation

ID # 13838
Module: Semester-VI
Submitted To: Zain Shaukat

SPRING-2020 Final Term
ASSIGNMENT

Q1. MCQS (10)

1. When should company stop the testing of a particular
software?

a. After system testing done

b. It depends on the risks for the system being tested

c. After smoke testing done

d. None of the above

2. White-Box Testing is also known as ________ .

a. Structural testing

b. Code-Based Testing

c. Clear box testing

d. All of the above

3. ___________ refers to a different set of tasks ensures
that the software that has been built is traceable to
Customer Requirements.

a. Verification

b. Requirement engineering

c. Validation

d. None of the above

4. ________ verifies that all elements mesh properly and
overall system functions/performance is achieved.

a. Integration testing

b. Validation testing

c. Unit testing

d. System Testing

5. What do you verify in White Box Testing?
- Published on 03 Aug 15

a. Testing of each statement, object and function on an
individual basis.

b. Expected output.

c. The flow of specific inputs through the code.

d. All of the above.

6. __________ refers to the set of tasks that ensures the
software correctly implements a specific function.
- Published on 03 Aug 15

a. Verification

b. Validation

c. Modularity

d. None of the above.

7. Who performs the Acceptance Testing?
- Published on 03 Aug 15

a. Software Developer

b. End users

c. Testing team

d. Systems engineers

8. Which of the following is not a part of Performance
Testing?
- Published on 30 Jul 15

a. Measuring Transaction Rate.

b. Measuring Response Time.

c. Measuring the LOC.

d. None of the above.

9. Which of the following can be found using Static Testing
Techniques?
- Published on 29 Jul 15

a. Defect

b. Failure

c. Both A & B

10. Testing of individual components by the developers are
comes under which type of testing?

- Published on 29 Jul 15

a. Integration testing

b. Validation testing

c. Unit testing

d. None of the above.

Q2. Explain Black Box testing and White Box testing in
detail.

ANSWER(2):

BLACK BOX TESTING:

In Black-box testing, a tester doesn't have any information

about the internal working of the software system. Black box

testing is a high level of testing that focuses on the behavior

of the software. It involves testing from an external or end-

user perspective. Black box testing can be applied to virtually

every level of software testing: unit, integration, system, and

acceptance.

Types of Black Box Testing

There are many types of Black Box Testing but the following

are the prominent ones -

•Functional testing – This black box testing type is

related to the functional requirements of a system; it is

done by software testers.

•Non-functional testing – This type of black box testing is

not related to testing of specific functionality, but non-

functional requirements such as performance, scalability,

usability.

•Regression testing - Regression Testing is done after

code fixes, upgrades or any other system maintenance to

check the new code has not affected the existing code.

White Box testing:

White-box testing is a testing technique which checks the

internal functioning of the system. In this method, testing is

based on coverage of code statements, branches, paths or

conditions. White-Box testing is considered as low-level

testing. It is also called glass box, transparent box, clear box

or code base testing. The white-box Testing method assumes

that the path of the logic in a unit or program is known.

Types of White Box Testing:

White box testing encompasses several testing types used to

evaluate the usability of an application, block of code or

specific software package. There are listed below --

•Unit Testing: It is often the first type of testing done on

an application. Unit Testing is performed on each unit or

block of code as it is developed. Unit Testing is

essentially done by the programmer. As a software

developer, you develop a few lines of code, a single

function or an object and test it to make sure it works

before continuing Unit Testing helps identify a majority

of bugs, early in the software development lifecycle.

Bugs identified in this stage are cheaper and easy to fix.

•Testing for Memory Leaks: Memory leaks are leading

causes of slower running applications. A QA specialist

who is experienced at detecting memory leaks is

essential in cases where you have a slow running

software application.

KEY Difference b/w WHITE AND BLACK BOX TESTING:

•In Black Box, testing is done without the knowledge of

the internal structure of program or application whereas

in White Box, testing is done with knowledge of the

internal structure of program.

•Black Box test doesn’t require programming knowledge

whereas the White Box test requires programming

knowledge.

•Black Box testing has the main goal to test the behavior

of the software whereas White Box testing has the main

goal to test the internal operation of the system.

•Black Box testing is focused on external or end-user

perspective whereas White Box testing is focused on

code structure, conditions, paths and branches.

•Black Box test provides low granularity reports whereas

the White Box test provides high granularity reports.

•Black Box testing is a not time-consuming process

whereas White Box testing is a time-consuming process.

Q3. Find the cyclomatic Complexity and draw the Graph of
this code.

Answer(3):

CYCLOMATIC Complexity is a software metric used to
measure the complexity of a program. It is a quantitative
measure of independent paths in the source code of the
program. Independent path is defined as a path that has at
least one edge which has not been traversed before in any
other paths. Cyclomatic complexity can be calculated with
respect to functions, modules, methods or classes within a
program.

This metric was developed by Thomas J. McCabe in 1976 and
it is based on a control flow representation of the program.
Control flow depicts a program as a graph which consists of
Nodes and Edges.

In the graph, Nodes represent processing tasks while edges
represent control flow between the nodes.

Program x:

 Cyclomatic complexity of program X is the number of
condition +1.

 (Cyclomatic complexity = condition + 1)

 There are two (2)

 “if” conditions and 1 “while” condition.

 Therefore program ‘X’ = 4

 Control flow diagram program X:

Q4. What is Z specification and why its is used for, also give
some example this code written in Z specification.

Answer(4):

Z Specification:

➔ Z Specification is a formal specification language

➔ used for describing and modeling computing systems

➔ based on the standard mathematical notation used in

axiomatic set theory, lambda calculus and first-order

predicate logic

With the ever-increasing complexity of computer

systems, reliable and effective, design and development

of high quality systems that satisfy their requirements is

extremely important. In the mission and safety critical

system failure can cause cost overrun, loss of lives or

even severe economic consequences can arise. So, in

such situations, it is necessary that errors are uncovered

before software is put into operation. These challenges

call for acceptance of proper engineering methods and

tools and have motivated the use of formal methods in

software engineering. There are varieties of formal

specification languages available to fulfill this goal and

one way to achieve this goal is by using Z formal

specification language. Z is model oriented formal

method. based on set theory and first order predicate

calculus.

Usage and notation:

Z is based on the standard mathematical notation used in

axiomatic set theory, lambda calculus, and first-order

predicate logic. All expressions in Z notation are typed,

thereby avoiding some of the paradoxes of naive set theory.

https://en.wikipedia.org/wiki/Axiomatic_set_theory
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Type_(model_theory)

Z contains a standardized catalog (called the mathematical

toolkit) of commonly used mathematical functions and

predicates, defined using Z itself.

Although Z notation (just like the APL language, long before
it) uses many non-ASCII symbols, the specification includes
suggestions for rendering the Z notation symbols in ASCII and
in LaTeX. There are also Unicode encoding s for all standard Z
symbols.

//Data dictionary entry

 DataDictionaryEntry

 entry: NAME

 desc: seq char

 type: Sem_model_types

 creation_date: DATE

//Data dictionary as a function

 DataDictionary

 DataDictionaryEntry

 ddict: NAME→ {DataDictionaryEntry}

//Data dictionary - initial state

 Init-DataDictionary

 DataDictionary

https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/LaTeX

’ ddict’ = Ø

//Add and lookup operations

 Add_OK

 ∆ DataDictionary

 name?: NAME

 entry?: DataDictionaryEntry

 name? ∉ dom ddict

 ddict’ = ddict ∪ {name? → entry?}

Lookup_OK

 Ξ DataDictionary

 name?: NAME

 entry!: DataDictionaryEntry

 name? ∈ dom ddict

 entry! = ddict (name?)

Add_Error

 Ξ DataDictionary

 name?: NAME

 error!: seq char

 name? ∈dom ddict

 error! = “Name already in dictionary”

 Replace_OK

 ∆ DataDictionary

 name?: NAME

 entry?: DataDictionaryEntry

 name? ∈dom ddict

 ddict’ ⊕{name? → entry?}

//Delete entry

 Delete_OK

 ∆ DataDictionary

 name?: NAME

 name? ∈dom ddict

 ddict’ = {name?} ddict

Extract

 DataDictionary

 rep!: seq {DataDictionaryEntry}

 in_type?: Sem_model_types

 ∀n : dom ddict • ddict(n). type = in_type? ⇒ddict (n) ∈rng
rep!

 ∀i : 1 ≤ i ≤ #rep! • rep! (i).type = in_type?

 ∀i : 1 ≤ i ≤ #rep! • rep! (i) ∈rng ddict

 ∀i , j: dom rep! • (i < j) ⇒rep. name(i) < NAME rep.name (j)

 THE END

