[image:]
Iqra National University Peshawar Pakistan
Department of Computer Science
Spring Semester, Final Term Exam, June 2020

	Paper :
	Software Design
	Date and Starting Time:
	24/June/2020, 9:00 am

	Program:
	MS (CS & SE)
	Uploading Date and End Time:
	24/June/2020, 3:00 pm

	Teacher Name:
	Dr. Fazal-e-Malik
	Marks
	50

Submitted By

	
NAME
	
Muhammad khan

	
ID
	
15452

	
Program:
	
MS (CS & SE)

	
Semester
	
3rd

Submitted To

	Dr. Fazal-e-Malik

[bookmark: _GoBack]

Q .1
Is there any relationship among Client (Customer, sponsor),Developer and End User? If yes then explain.

No front-end project is considered successful, unless the client-developer relationship is nurtured in good spirits from both the ends. Sometimes, absence of common sense from either side ruins a flourishing project, prematurely. This is a sensitive subject and I'll try my best to do justice for both the sides. There's so much of psychology involved whenever 'relationships' come into play. Let's calmly try to decipher this not so complex scenario.
So, let's get started and start with the developer's end to understand the dynamics of his views and expectations when working with a client.
Developers should absolutely be in contact with the clients! Even if a business analyst writes a formal specification, its always beneficial to have access to the client to ask specific questions or get instant feedback on a feature you are working on. Business analysts are very helpful, but I would never want to work solely through them for requirements. Also, I would never want to wait more than a week or two to show off a feature to a client. Even if they make changes, its always easier to make a small change closer to the time of development rather than piling all the changes to the end of the project.
Newer software methodologies are also geared toward bringing the client and the software development teams closer together. One of the main principles of Agile/Scrum is that the client be on the team and always be available for questions. Agile teams also demo their software after every sprint or iteration. Agile was formed under the assumption that software changes and that teams should be "agile" and adapt to changing business requirements.
Developer's Perspective
As I'm myself a front-end developer, I'll start with how one perceives his relationship with a client. A good developer loves to get a client who has good listening skills and is ready to consider or ponder over former's suggestions.
Problem arises, when a client takes the driving seat, when it comes to designing a website. Another important factor is the compensation agreed upon. Getting peanuts for doing a considerable amount of work is not what anyone would want. If a client .
A good client…
· is able to quantify the cost, whenever a reasonable quote is given.
· explains his requirements in a clear fashion.
· is ready to listen.
· understands the scope of the project.
· actively fulfills developer's requests (data, files, media).
· proactively gives feedback.
· acknowledges dedication of the developer.
· knows the primary goal of his website.
Well, that sums up everything. To keep things short and sweet, let's hop on to the other side of the hedge.
Client's Perspective
And, now we'll talk about how a client may perceive his relationship with a web developer. Smart clients can easily differentiate between good and bad front-end developers.
In a nutshell, if a developer is desperate in his approach and is cold calling with low rates, it is a clear signal he is going to give you crap in return. Another one can boast of his extraordinary skills talking technical jargon which you may not understand. Just keep away from him because a good one talks in layman's language when interacting with his clients.
A good developer...
· neither quotes too low nor too high.
· listens and understands.
· clearly outlines terms & conditions, beforehand.
· has a good turn around time.
· proactively gives suggestions for a higher converting design.
· do not fret when asked for a reversion or a tweak (within project limits).
· knows how to explain technical jargon in simple language.
· value customers even after project completion.
So, that sums up the views, perceptions and expectations of both the sides. Feel free to share your experiences (good or bad), no matter which side you were on while going through a custom web design project.

Q .2
	Explain the design “Trades-Offs” between the following:
a) Cost vs. Robustness
b) Cost vs. Reusability
c) Backward compatibility vs. Readability

Treads-Offs
A trade-off (or tradeoff) is a situational decision that involves diminishing or losing one quality, quantity or property of a set or design in return for gains in other aspects. In simple terms, a tradeoff is where one thing increases and another must decrease. Tradeoffs stem from limitations of many origins, including simple physics – for instance, only a certain volume of objects can fit into a given space, so a full container must remove some items in order to accept any more, and vessels can carry a few large items or multiple small items. Tradeoffs also commonly refer to different configurations of a single item, such as the tuning of strings on a guitar to enable different notes to be played, as well as allocation of time and attention towards different tasks.
The concept of a tradeoff suggests a tactical or strategic choice made with full comprehension of the advantages and disadvantages of each setup. An economic example is the decision to invest in stocks, which are risky but carry great potential return, versus bonds, which are generally safer but with lower potential returns.
The term is also used widely in an evolutionary context, in which case the processes of natural selection and sexual selection are in reference as the ultimate decisive factors. In biology, the concepts of tradeoffs and constraints are often closely related. In economics, a trade-off is commonly expressed in terms of the opportunity cost of one potential choice, which is the loss of the best available alternative.
An opportunity cost example of trade-offs for an individual would be the decision by a full-time worker to take time off work with a salary of $50,000 to attend medical school with annual tuition of $30,000 and earning $150,000 as a doctor after 7 years of study. If we assume for the sake of simplicity that the medical school only allows full-time study, then the individual considering stopping work would face a trade-off between not going to medical school and earning $50,000 at work, or going to
Q .2 a
Cost Trade-offs
cost-benefit trade-off. desirability of a product or service in terms of the expected benefit relative to the cost; also called cost-benefit analysis. For example, a homeowner might weigh the expense of a lawn care service against the benefit of more leisure time and a better looking lawn.
cost-benefit trade-off
desirability of a product or service in terms of the expected benefit relative to the cost; also called cost-benefit analysis. For example, a homeowner might weigh the expense of a lawn care service against the benefit of more leisure time and a better looking lawn. A business weighs the expense of a new computer system against the benefit of reduced manual effort and errors. If the expected benefit exceeds the cost, the purchase is justified by a positive cost-benefit trade-off.
Robustness Trade-offs
Nowadays, most engineering design methods try to assist decision makers for optimizing the processes
and achieving the highest quality with minimum costs. The process of finding the accurate design
parameters is stated as an optimization. Typically, any optimization technique needs to consider design
constraints. It is the engineer’s duty to choose the design parameters  according to an (or some) objective
function(s)Process optimization is one of the intensive aspects of
product development During the optimization process, we need to maximize one or
more parameters, while keeping all others within their constraints. The main goal is to reach a desired
performance for the process that manufactures some products, by minimizing the cost of operation in a
production process, or the variability of a quality characteristics by maximizing the yield of the
production process. Furthermore, due to noisy data and/or uncertainty affecting some parameters of the
model, achieving robust performance plays an essential role for engineering design problems.
In practice, most processes are affected by external uncontrollable factors which cause that quality
characteristics being far from the ideal points with variation in their exact values. Taguchi’s Robust
Cost Trade-Off
The objective of the time-cost trade-off analysis is to reduce the original project duration, determined form the critical path analysis, to meet a specific deadline, with the least cost. In addition to that it might be necessary to finish the project in a specific time to:
· Finish the project in a predefined deadline date.
· Recover early delays.
· Avoid liquidated damages.
· Free key resources early for other projects. Construction Management 165 Dr. Emad Elbeltagi
· Avoid adverse weather conditions that might affect productivity.
· Receive an early completion-bonus.
· Improve project cash flow
Reducing project duration can be done by adjusting overlaps between activities or by
reducing activities’ duration. What is the reason for an increase in direct cost as the
activity duration is reduced? A simple case arises in the use of overtime work. By
scheduling weekend or evening work, the completion time for an activity as measured in calendar days will be reduced. However, extra wages must be paid for such overtime work, so the cost will increase. Also, overtime work is more prone to accidents and quality problems that must be corrected, so costs may increase. The activity duration can
be reduced by one of the following actions:
- Applying multiple-shifts work.
- Working extended hours (over time).
- Offering incentive payments to increase the productivity.
- Working on week ends and holidays.
- Using additional resources.
- Using materials with faster installation methods.
- Using alternate construction methods or sequence.

Activity Time-Cost Relationship
In general, there is a trade-off between the time and the direct cost to complete an
activity; the less expensive the resources, the larger duration they take to complete an
activity. Shortening the duration on an activity will normally increase its direct cost
which comprises: the cost of labor, equipment, and material. It should never be assumed that the quantity of resources deployed and the task duration are inversely related. Thus one should never automatically assume that the work that can be done by one man in
Q .2 b
Reusability Trade-offs
There is a trade-off between reusability and usabilityThe more general the interface, the greater the reusability but it is then more complex and hence less usable.
Change of Reuse
Remove application-specific methods.Change names to make them general.Add methods to broaden coverage.Make exception handling consistent.Add a configuration interface for component adaptation.Integrate required components to reduce dependencies.Chapter 16 Component-based software engineering
Reusable componentsThe development cost of reusable components may be higher than the cost of specific equivalents. This extra reusability enhancement cost should be an organization rather than a project cost.Generic components may be less space-efficient and may have longer execution times than their specific equivalents.Chapter 16 Component-based software engineering
Component management
Component management involves deciding how to classify the component so that it can be discovered, making the component available either in a repository or as a service, maintaining information about the use of the component and keeping track of different component versions. A company with a reuse program may carry out some form of component certification before the component is made available for reuse. Certification means that someone apart from the developer checks the quality of the component. Chapter 16 Component-based software engineering

Q .2 c
What is meant by backward compatibility?
Backward compatible refers to a hardware or software system that can use the interface of an older version of the same product. A new standard product or model is considered backward compatible when it is able to read,
Backward compatibility (sometimes backwards compatibility) is a property of a system, product, or technology that allows for interoperability with an older legacy system, or with input designed for such a system, especially in telecommunications and computing. Backward compatibility is sometimes also called downward compatibility.
Modifying a system in a way that does not allow backward compatibility is sometimes called "breaking" backward compatibility.
A complementary concept is forward compatibility. A design that is forward-compatible usually has a roadmap for compatibility with future standards and products
In programming jargon, the concept is sometimes referred to as hysterical reasons or hysterical raisins, homophones for "historical reasons
The literal costs of supporting old software is considered a large drawback to the usage of backward compatibility.The associated costs of backward compatibility are a higher bill of materials if hardware is required to support the legacy systems; increased complexity of the product that may lead to longer time to market, technological hindrances, and slowing innovation; and increased expectations from users in terms of compatibility. Because of this, several gaming consoles chose to phase out backward compatibility toward the end of the console generation in order to reduce cost and briefly re-invigorate sales before the arrival of newer hardware.
A notable example is the Sony PlayStation 3, as the first PS3 iteration was expensive to manufacture in part due to including the Emotion Engine from the preceding PS2 in order to run PS2 games, since the PS3 architecture was completely different from the PS2. Subsequent PS3 hardware revisions have eliminated the Emotion Engine as it saved production costs while removing the ability to run PS2 titles,as Sony found out that backward compatibility was not a major selling point for the PS3 in contrast to the PS2. The PS3's chief competitor, the Microsoft Xbox 360, took a different approach to backward compatibility by using software emulation in order to run games from the first Xbox, rather than including legacy hardware from the original
Readability
IBM developed an early grammar and style checker called EPISTLE, which was intended to help stamp out gobbledygook as well as poor constructions in business communications. In the 1980s, linguists and specialists in artificial intelligence at the IBM Thomas J. Watson Research Center expanded EPISTLE into a tool (called Critique) that technical writers could use. In addition to getting a Flesch-Kincaid score (an adaptation of the Flesch Reading Ease score for use by the U.S. Department of Defense), writers could specify which kinds of errors they wanted to know about, such as:
• Improper forms of verbs and pronouns
• Confusing words and awkward phrases
• Subject-verb agreement
• Punctuation and spelling.
Critique also provided information specific to technical writing such as infinitives and
gerunds as subjects, passive verbs, and noun strings.
Q 3 What is the outcome of the software design? Explain in detail.
As mentioned earlier, software design is the process of setting a foundation for constructing your software structure code. This is what makes it the most important aspect of software development yet there are many corner sights to it, which may give reasonable answers to the importance of software design.
Therefore, let us communicate about why software design is so important and what makes it the same?
Following are some points that make software design so important:
1. Modularity Is Of Great Convenience:
Modularity, the first concept of software design it is. It means cleaving your huge software project into small modules. It simply means splitting the software project into small pieces, small tasks called modules for the simplicity of work. Splitting your critical software project into modules only makes it easier to work on every requirement of the project. It also gives the convenience of making changes in the future. If in case, the requirement of your client changes, then you can anytime go for restructuring a module, not the whole project. It gives you the ease of finding errors in the modules, not the whole structured complicated code. Therefore, modularity makes the software simpler and simplicity makes it effective, this is why software design is important.
2. Maintainability Is A Plus:
As software design is performed by creating modules, it makes the task easier to maintain. Tasks like finding bugs, debugging, restructuring, and changing the functionality of specific elements in the software application become quite easy due to software design. A good software design gives you the privilege of changing the appearance, functionality, etc, of the software by working on a specific module. For example; in case you have already completed the creation of a software application, but now you need a change in its interface then you can just make changes in the module that relates to the interface, you need not mess up with any other module. This is how software design helps in the maintenance of your software application.
3. The Flow Of Functionality And Performance:
Software design is a reflection of the performance of the software application. A good software design effectively displays the flow of functions taking place while the software is running. From input to the output, a software design shall show all the steps so that the performance of the software application can be analyzed. If in case the software project is handed over from a software developer to another, then the new developer should understand the software by just reading the software design and this is what the privilege is given by good software design.
4. Portability And Trackability:
When it comes to making changes in the software, the elements like portability come handy. Portability in the software design gives the convenience of transferring functions from a module to another, as it can make a whole lot of changes in the functionality of software applications. Another, important element of software design is Trackability. Trackability is as its name suggests, it is the aptitude for tracking the flow of functions taking place in the software working. Good software design provides track ability to the software application which makes it easier to use and maintain.
Now that I have mentioned the reasonable approaches towards the importance of software design, let’s have a talk about how it is done the right way.
How To Do Software Design The Right Way?
Well, software design is more like a rule-free process because designers can have hold of their own designing styles. Yet, there are few steps that make a software design stand out and implementing those steps in your software design flow is the right way to do it.
The steps for effective and correct software design are detailed as follows:
The first step is understanding the requirements. It is important to understand the requirements of your client and segment them to be included in your modules.
Establish communication between the team members. As software design is not a task of the one-man army, it takes a team to perform. Therefore, it is important to establish communication in the team so that there are clarifications and the right flow in the process.
Define the functional flow of the software, choose compatible integration systems, select tools to complement it and never overlook the price factor of application.
Avoid using multiple document management systems so that you have a unique solution environment.
Deploy the aspects of development, testing and performance analysis carefully in the design itself.
Q (4)
What is ADL (Architectural Descriptive Language)? How many ADLs are there? Explain one of them.?
Architecture description languages (ADLs) are formal languages that can be used to represent the architecture of a software-intensive system. As architecture becomes a dominating theme in large system development, methods for unambiguously specifying architecture will become indispensable.
By architecture, we mean the components that comprise a system, the behavioral specifications for those components, and the patterns and mechanisms for interactions among them. Note that a single system is usually composed of more than one type of component: modules, tasks, functions, etc. An architecture can choose the type of component most appropriate or informative to show, or it can include multiple views of the same system, each illustrating different componentry.
To date, architectures have largely been represented by informal circle-and-line drawings in which the nature of the components, their properties, the semantics of the connections, and the behavior of the system as a whole are poorly (if at all) defined. Even though such figures often give an intuitive picture of the system's construction, they usually fail to answer such questions as:

· What are the components? Do the modules exist only at design-time, or are they compiled together before run time? Are these tasks or processes threaded together from different modules, assembled at compile-time, and do they form run time units? Are they something as nebulous as "functional areas," as in data flow diagrams, or something else entirely?
· What do the components do? How do they behave? What other components do they rely on?
· What do the connections mean? Do they mean "sends data to," "sends control to," "calls," "is a part of," some combination of these, or something else? What are the mechanisms used to fulfill these relations?
· ADLs result from a linguistic approach to the formal representation of architectures, and as such they address the shortcomings of informal representations. Sophisticated ADLs allow for early analysis and feasibility testing of the design decisions.
ADLs trace their roots to module interconnection languages of the 1970s. Today, ADLs are in a maturing phase, but several exist. Current examples include Rapide, UniCon, ArTek, Wright and Meta-H.
Architecture and ADLs
An architecture plays several roles in project development, all of them important, and all of them facilitated by a formal representation of the architecture, such as with an ADL. A formal architecture representation is more likely to be maintained and followed than an informal one, because a formal architecture can more readily be consulted and treated as authoritative, and can more easily be transferred to other projects as a core asset. Roles include:
· Basis for communication: Project team members, managers, and customers all turn to the architecture as the basis for understanding the system, its development, and how it works during execution.
· Project blueprint: The choice of architectural components is institutionalized in the developing organization's team structure, work assignments, management units, schedule and work breakdown structures, integration plans, test plans, and maintenance processes. Once it is made, an architectural decision has an extremely long lifetime and survives even outside of the software that it describes.
· Blueprint for product line development. An architecture may be re-used on other systems for which it is appropriate. If managed carefully, an entire product family may be produced using a single architecture. In this case, the importance of an appropriate architecture is magnified across all the projects it will serve.
· Embodiment of earliest design decisions: The architecture represents the first mapping from requirements to computational components. The selection of components and connections, as well as the allocation of functionality to each component, is a codification of the earliest design decisions about a project. All downstream design decisions must be consistent with the architectural choices. As such, architectural decisions are the hardest to change, and have the most far-reaching consequences.
· First approach to achieving quality attributes: An architecture can either allow or preclude the achievement of most of a system's targeted quality attributes. Modifiability, for example, depends extensively on the system's modularization, which reflects the encapsulation strategies. Component reusability depends on how strongly coupled components are with other components in the system. Performance depends largely on the volume and complexity of the inter-component communication and coordination, especially if the components are physically-distributed processes. Thus, an architecture embodies decisions about quality priorities and tradeoffs, and represents the earliest opportunity for evaluating those decisions and tradeoffs.
Some ADLs provide an opportunity for architecture-level analysis, such as automatic simulation generation, schedulability analysis, and the like. However, even in the absence of automated analysis capabilities, other evaluative strategies can be applied to the architecture. Thus, these early design decisions and quality attribute tradeoffs can be tested before they are too expensive to change.
UML and ADL
Architecture Description Language (ADL) is defined as "a language (graphical, textual, or both) for describing a software system in terms of its architectural elements and the relationship among them".
In other words, ADL is a language enabling formalization, description, specification, modeling and reasoning on software architectures. Each of these features should be fulfilled by a language that is proclaimed to be ADL. A good ADL must provide abstractions that are adequate for modeling a large system. Each ADL embodies a particular approach to the specification and evolution of architecture.
Unified Modeling Language (UML) is formal graphical language considered a de facto industrial stand. Although the language has been initially created as a graphical language that supports object oriented software analysis and design, the language has been revised a couple of times and today, it is a general formal language capable of describing a software system. The UML has a well-defined formal syntax and semantics, and can be machine checked and processed. UML includes a set of graphical notation techniques to create abstract models of specific systems.
Haskell as an ADL example
The architecture description combinators in this example have been designed for the generic presentation-oriented structure editor Proxima. Proxima supports the editing of document structure as well as its presentation. Because of the complexity of the actual Proxima architecture, we introduce a simple layered architecture for a presentation-oriented editor to explain the architecture description methods.
The figure above shows the data flow for the layer functions in the normalized Simple
data Simple state map doc pres gest upd =
 Simple { present :: LayerFn state doc
 (map, state) pres
 , interpret :: LayerFn (map, state) gest
 state upd
}
ADLs and their relationship to other languages
How do ADLs differ from programming languages, requirements languages, modeling languages, and the like? Given a language for expressing properties or behaviors of a system, what are the criteria for deciding if it is an ADL or not? Unfortunately, it isn't clear.
In principle, ADLs differ from requirements languages because the latter category describes problem spaces, whereas the former category is rooted in the solution space.
In practice, requirements are often divided into behavioral chunks for ease of presentation, and the languages used for representing those behaviors are sometimes well-suited to representing architectural components, even though that was not the original goal of the language. For example, Modechart, a requirements language similar to Statechart, exhibited stronger analytical capabilities than most ADLs because of the presence of a model-checking verifier. Modechart was considered to be an ADL because its componentry (state machines) could be interpreted as architectural components. However, Modechart was not designed to be an ADL, and so it is easy to produce artifacts in Modechart that do not, under any reasonable semantic interpretation, correspond to an architectural view of a system.
In principle, ADLs differ from programming languages because the latter category binds all architectural abstractions to specific point solutions whereas ADLs intentionally suppress or vary such binding.
In practice, architecture is embodied in and recoverable from code, and many languages provide architecture-level views of the system. For example, Ada offers the ability to view a system just in terms of its package specifications, which are the interfaces to components. However, Ada offers little or no architecture-level analytical capabilities, nor does it provide architecture level insight into how the components are "wired" together.
In principle, ADLs differ from modeling languages because the latter category is more concerned with the behaviors of the whole rather than of the parts, whereas ADLs concentrate on representation of components.
In practice, many modeling languages allow the representation of cooperating components and can represent architectures reasonably well.
Two leading ADL researchers offer their desiderata for ADLs. Shaw lists the

 following as important properties that ADLs should exhibit:
· ability to represent components (primitive or composite) along with property assertions, interfaces and implementations;
· ability to represent connectors, along with protocols, property assertions, and implementations;
· abstraction and encapsulation;
· types and type checking;
· ability to accommodate analysis tools openly.
· Luckham lists the following as requirements for an ADL:
· component abstraction;
· communication abstraction;
· communication integrity (limiting communication to those components connected to each other architecturally);
· ability to model dynamic architectures;
· ability to reason about causality and time;
· hierarchical refinement support;
· relativity, the mapping of behaviors to (possibly different) architectures, as a first step towards checking conformance.
These lists illustrate different points of view about what constitutes an ADL. There is no clear line between ADLs and non-ADLs. Languages can, however, be distinguished from one another according to how much architectural information they represent. Languages that were born as ADLs show a clear advantage in this area over languages built for some other purpose and later co-opted to represent architectures.
Feature-Oriented Domain Analysis (FODA)
Feature analysis is a tool for certain domain analysis methods such as the Feature-Oriented Domain Analysis (FODA) method; it proceeds by cataloguing user-visible system features in a structured fashion.
Features are structured into the following three categories: system-oriented features, language-oriented features, and process-oriented features.
Feature-Oriented Domain Analysis (FODA)
Feature analysis is a tool for certain domain analysis methods such as the Feature-Oriented Domain Analysis (FODA) method; it proceeds by cataloguing user-visible system features in a structured fashion.
Features are structured into the following three categories: system-oriented features, language-oriented features, and process-oriented features.
System-oriented features
System-oriented features are related to the application system derived from the architecture description. For example, certain ADLs may not be able to express real-time constraints about a system's architectural components, while others can. All features in this category are attributes of an end system; however, they reflect on the ability of the ADL to express or describe those attributes at the architectural level.
Language-oriented features
Language-oriented features are features of the ADL itself, independent of the system(s) it is being used to develop. These attributes include the kind of information usually found in a language reference manual. An example is how the ADL's syntax and semantics are formally specified, and what architectural abstractions the ADL embodies.
Process-oriented features
Process-oriented features are features of a process related to using the ADL to create, validate, analyze, and refine an architecture description, and build an application system from it. The components included here are the attributes that measure or describe how or to what extent an ADL allows predictive evaluation of the application system based on architecture-level information. These attributes measure whether or not the ADL contains enough information to make an architecture analyzable, independently of whether or not tools actually exist that exploit that capability.
Q (5)
What is the Architectural Style? Explain components of a style?
The architectural style, also called as architectural pattern, is a set of principles which shapes an application. It defines an abstract framework for a family of system in terms of the pattern of structural organization. Provide a lexicon of components and connectors with rules on how they can be combined.
Architectural style
The architectural style is a very specific solution to a particular software which typically focuses on how to organize the code created for the software. It is the granularity of highest level that focuses on creating the layers and modules of the software and allowing an appropriate interaction between the various modules for giving the right results upon implementation.
The architectural pattern is the description of relationship types and elements along with a set of constraints to implementing a software system. The patterns are usually resuable solutions for common problems or models.
There are various types of architectural styles followed for software creation. In this lesson, we discuss data-centric, object-oriented, and layered architectural patterns.
Data-Centric Style
As the name suggests, the data-centric architecture style has centralized data that is used by various components of the software, and these components access the data repositories of the software. The best example for such an architectural style is the relational database system that follows a database schema in which data stored in various tables inside the database is accessible by various components used in the software. Think about an inventory management software with huge amount of data to handle. Typically this type of a business requirement would use the data-centric style.
Layered Architecture Style
Also known as n-tier architectural style, it is one of the most common styles used in software development life cycle. This style is divided into various horizontal layers and each layer has some specific function. Generally, this architectural style has four layers namely presentation, business, persistence, and database, where each layer has a different function. Presentation layer deals with the user interface, the business layer is responsible for the various business rules and conditions, persistence layer makes data accessible to the other layers and the database layer stores and provides data to the other components. Large business organizations with a focus on user interface, use this architectural style. Because of the layered approach, different teams can be allocated to work on the different layers.

image1.png

