
Department of Electrical Engineering Final Assignment Date: 22/06/2020

Commo	Deteile
Course	Details

	Course Details				
Course 'Instruct	Γitle: Electrical Network Analysis or: Dr Shehryar Shafique Qureshi	Module: Total		4th 50	
mstruct	or. <u>Di Shem'yar Shanque Qureshi</u>	Marks:		<u> </u>	
	Student Details				
Name:	M.Salman shahid	Student ID:	15006		
Student	Signature:				
Q1.	Assume that a 2000-kW turbine-generator of 0.85 power fa	*		Marks 10 CLO 03	
	An additional load of 300 kW at 0.8 power factor is added. required to operate the turbine generator but keep it from be	eing overloaded?	acitors is		
Q2.	A balanced <i>abc</i> sequence, one line voltage of a balanced Y	-connected source is	$V_{AB} =$	Marks 10 CLO 02	
	phase and line currents.			CLO 02	
Q3.	following: a) The complex and apparent powers b) The real and reactive powers, and c) The power factor and the load impedance.			Marks 10 CLO 01	
Q4.	Apply Laplace transform and calculate the output voltage v below: Figure	$v_o(t)$ in the circuit of	figure	Marks 10 CLO 01	
Q5.	For the circuit given in figure below, the speaker works as	-		Marks 10	
	the capacitor act as the source. To block dc current from a capacitor of 80 nF is used (see figures below). Calculate the a) At what frequency is maximum power transfer to the	ne following:	ling	CLO 03	
	b) If Vs = 5 V _{ms} how much power is delivered to the	•			

CLO 03

301:-

Given datai-

P1 = 200014W, Cosa1=0.85

S1 = P= = 2352.94 KVA

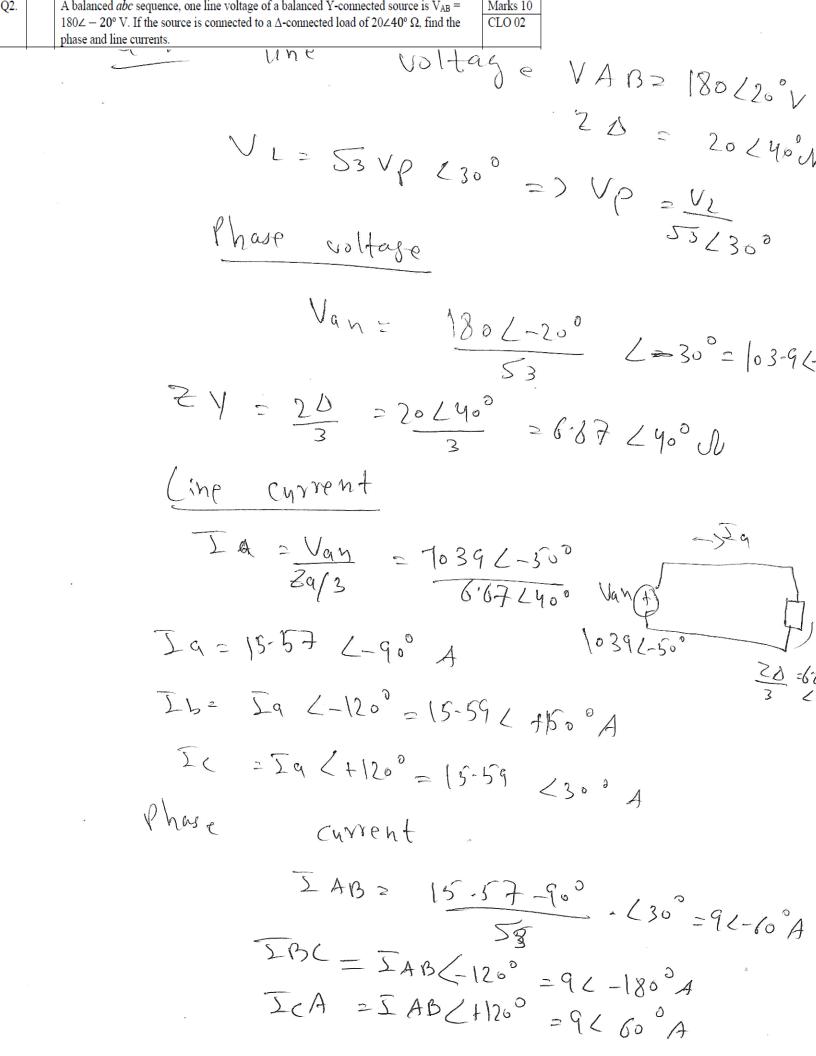
Q1 = \[\si^2 - P_1^2 = 129.49.19VAr

Additional load

Radd= 300KW & Cos dadd=08

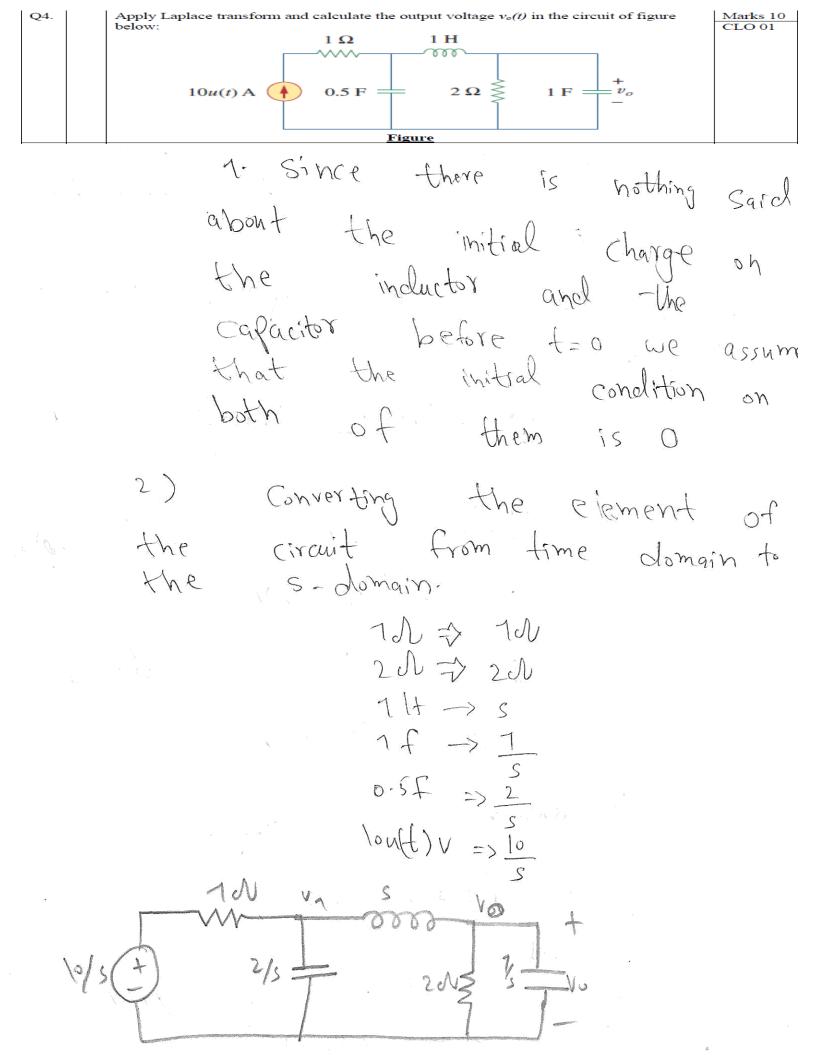
Sadd = Padd = 37514VA Cosdadd

Q add = JSadd - Padd = 255 KVAV


Total load

P2 = P1 - Padd = 2300 KW

Q2 = Q1+Qadd = 1864.49 19VAV


Sz = Si + Sadd = 2727.94 15 WA

being overloaded, total complex former has to be equal to the complex lower of a vated load. S2 = S1 We have to add capacitor with reactive Power Oc Sz + j Qc= St Pr + jQ2+jQc = S1 Q2' = 552 - P2 = 496.37 KVAr where Q2 75 Q2 AQC Qc = Q2 - Q2 = -968-18KVAV we need Rapacitor with reactive Bower of 988.1818 Var

Q3.	Consider a load with value of, V _{rms} = 110∠85° V, I _{rms} = 0.4∠15° A. Calculate the following: a) The complex and apparent powers b) The real and reactive powers, and c) The power factor and the load impedance.	Marks 10 CLO 01
	(231- Soll- Vrms = 170285°V Trms = 0.4215°A	
	Stef 2 a') complex fower is S= Vrms Irms S= (110 L85°)(0.46-15°) S= 170 x0-4c(85-15°)	
	S= 94 C70° VA Apparent power S= 151 S= 44 VA Step 3 Express in complex 0	
	EN Rectangular Complex P. S= 44 (700 S= 44 (cos(70) + Jsin(700)) S= 44 (0.3420 + jo.9397)	hev

SE TOURS OF THE SE S = 15.05. † 147.35 Since S= Ptiq real Power P= 15-05 W reactive power Q = 41-35 VAR Step 4 is The Power factor is 8 f = Cos (70°) Rf = 0-342 (agging frome & factor is lagging as the realtire doner is tive The bad impedance is 3=-V= Szvrms 1 = SIIVMS Ster 5 Z= 17051285° 2= 2752 7° N 2= 275 [(os(70°)+j sih(70°)] 2= 275 (0.342 +j0.9337) 2= (94.05 +j258.4) d

the s domain will look like one show in the above fig to the At node 1, applying KCL & ohm's law gives. $\frac{\sqrt{2}}{2}$ + $\frac{\sqrt{1-10}}{5}$ = 0 Multiplying by 2s and Simplifyi $(s^{2}+2s+2)v_{1}-2v_{0}=20$ Applying KCL. to hoole o Vo + Vo - Vy + Vo = 0 Multiplying by s & simplifying $V_1 = (s^1 + 0.5s + 1) v_0$ Substitut Eq (2) in Eq 7 yield (S²+25+2) (S²+0.55+1) Vo-2Vo = 20

$$V_{0} = \frac{20}{s(s^{3}+2.5s^{2}+4s+3)}$$

$$= \frac{20}{s(s+1.2301)(s^{2}+1.2694s+2.437+7)}$$
Now break down $V_{0}(s)$

$$= \frac{A}{s} + \frac{B}{s+1.230} + \frac{Cs+D}{s^{2}+7.259}$$
By vesidue method
$$A = (s) \left(\frac{20}{s(s+1.2301)(s^{2}+1.2694s+2.437+7)}\right) = s$$

$$= (-667)$$

$$= (-667)$$

$$= (-68)$$

$$Vo(s) = \frac{6.8}{5} = \frac{6.8}{5^{2} + 1.2301} + \frac{0.1333 - 8.199}{5^{2} + 1.26945 + 2.437}$$

$$= \frac{6.8}{5} = \frac{6.8}{5 + 1.2301} + \frac{0.138(5 + 0.1349)}{(5 + 0.6347)^{2} + (7.485)^{2}}$$

$$= \frac{8.2834}{5}$$

(aplace (5 fo:6347) f(7.4265)2

Vo(t) = [[Vo(s)?

$$= L^{-1} \left[\frac{6-667}{5} - L^{-1} \left[\frac{6.8}{3+1.2301} \right] + L^{-1} \left[\frac{5\cdot 1335+0.6347}{5+0.6347} \right] + L^{-1} \left[\frac{8-9.834}{5+0.6347} \right] +$$

= 6-1674 (t) -6-8e^{-7-236t}
u(t) to .133e⁻⁰⁸³⁴⁷
-5-80608e^{-0.6347}
Sin(7.4265))/u(t) V

Kesult

KesuH Vo (+) = (6.667 - 6.8e - 7.2306+ + e-0.63497 (0.133(05(7.48654)-5-8018 sin(1-4215t)) att)(v)

Q5.	For the circuit given in figure below, the speaker works as load while the amplifier and	Marks 10
	the capacitor act as the source. To block dc current from an amplifier, a coupling	CLO 03
	capacitor of 80 nF is used (see figures below). Calculate the following:	
	a) At what frequency is maximum power transfer to the speaker? b) If $Vs = 5 V_{rms}$, how much power is delivered to the speaker at that	

Q6) Source impedance
$$2b = Rs \int x$$

(and impedance $2L = RL + jxL$
for maximum load transfer
 $2L = 2s$ $\rightarrow Rs = R_2$ $\rightarrow x_c = x_L$
 $x_c = x_L$ $\rightarrow w_L = \frac{1}{w_c}$ $\rightarrow w = \frac{1}{5Lc} = 2JL$
 $f = \frac{1}{2JL} \int_{Cc} = \frac{1}{2JL} \int_{Saxbo} \frac{1}{3} \int_{$