IQRA NATIONAL UNIVERSITY (INU), PESHAWAR

School of Management and Social Sciences (Dept. of Business Administration)
Semester Summer 2020

Program Dept. of Art and Design
Mid Term Assignment
Subject Name: Business Mathematics
Submitted To: Tuheed ur Rehman

Submitted By: Jamal Nasar Khan
Class Id: 13519

Date: August 24, 2020

Art and Design Department
Mid-Summer 2020
Subject: Business Mathematics
Mr. Tuheed ur Rehman
Max Marks: 30
Date: 24 August, 2020

Question 1: (4+6)
a) Given the sets $A=\{\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{U}\}$ and $B=\{\mathrm{I}, \mathrm{J}, \mathrm{K}\}$, Draw a Venn diagram of A and B using the universal set $U=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$.
b) Define with examples;

- Equal Set
- Finite and Infinite Set
- Subset

Question 2: (4+6)

a) What are the four basic rules to solve an equation?
b) Find the solution to the equation

- $8(x-1)+17(x-3)=4(4 x-9)+4$
- $15(x-1)+4(x+3)=2(7+x)$

Question 3: (10)

Solve the following equation simultaneously using elimination method

$$
\begin{align*}
& 7 x+2 y=47 \tag{1}\\
& 5 x-4 y=1 \tag{2}
\end{align*}
$$

Q \# $\# 01$
(a) Given the set $A=\{A, E, 1,0, U\}$
and $B=\{1, J, K\}$, Draw a venn
Univeram of A and B using the
Solution:
Given Data:

$$
\begin{aligned}
& A=\{A, E, 1,0, U\} \\
& B=\{1, J, K\} \\
& U=\{A, B, C, D, \ldots \ldots, 2\}
\end{aligned}
$$

So,

Venn Diagram

Q\#01:
(b) Define with examples:

- Equal set
- Finite and infinite set
- Subset

SOLUTION:

* Equal Set:

Two sets are called equal if they have exactly the same elements.

Example:
(i) $\{1,3,5,7\}$ and $\{7,5,3,1\}$
(ii) \{January. March, May, November\} and May. March, January, November $\}$

* Finite and Infinite Set:

Finite Set:
Finite set are the sets having a finite/countable number of members
Finite set are also called countable set. Finite set are also called

Example:
(i) $P=\{0,3,6,9, \ldots ., 99\}$
(ii) $Q=\{a: a$ is an integer, $1<a<10\}$
Set:

Infinite Set:
If a set is not finite, it is called an infinite set because the

Page $\# 03$
number of elements in that set is not countable an d also we cannot represent it in Roster form. Thus, infinite set are also called un countable set.
Example B
(i) A set of whole number, $w=\{0,1,2, \ldots\}$
(ii) $\left.\frac{A}{\text { (ire set set of whole number }, w=\{0,1,2, \ldots\}}\right\}$
integers,$Z=\{0, \pm 1, \pm 2, \ldots$,

* Subset: A set " A " is a subset of another Set " B " if all elements of the set " A " are elements of the set " B ".
The set " A " is contained of inside the set " B ".
it in denoted by $A \subseteq B$,
Example:
(i) If $A=\{2,4,6\}$ and $B=\{0,1,2,3,4,5,6\}$. Then $A \subseteq B$.
(ii) if $P=\{$ March. May\} and $R=\{$ March April, May, June, July\}, Then $P \subseteq R$

Q\#02:
(a). What are the four basic rules to solve the equation?
Answer: There are four basic rules:
(i) An equal quantity may be added to both sides of an equation.
(ii) An equal quantity may be subtrac-an acted from both sides of an
(iii) An equal quantity may multiply
(iv) both sides of an equation. may divided both sides of
an equation.
(b) Find the solution to the equation

- $8(x-1)+17(x-3)=4(4 x-9)+4$
- $15(x-1)+4(x+3)=2(7+x)$

Solution:

$$
\begin{aligned}
& \text { tion: } 8(x-1)+17(x-3)=4(4 x-9)+4 \\
& \text {-old Removing the brackets from }
\end{aligned}
$$

both sides first and the in sim flying:

$$
\begin{aligned}
& 8(x-1)+17(x-3)=4(4 x-9)+4 \\
& \Rightarrow \quad 8 x-8+17 x-51=16 x-36+4
\end{aligned}
$$

Page + 05
$\Rightarrow \quad 25 x-59=16 x-32$
Adding 59 to both sides:

$$
\begin{aligned}
& 25 x=16 x-32+59 \\
& \Rightarrow 25 x=16 x+27 \\
& \text { tracking } 16 x
\end{aligned}
$$

Subtracting $16 x$ from both sides

$$
\begin{gathered}
\quad 25 x-16 x=27 \\
\Rightarrow \quad 9 x=27
\end{gathered}
$$

Dividing both Fides with 9:

$$
\begin{aligned}
\frac{9 x}{9} & =\frac{27^{3}}{9} \\
\Rightarrow \quad x & =3 \text { Ans } \\
\Rightarrow \quad 15(x-1) & +4(x+3)=2(7+x)
\end{aligned}
$$

Sol: Removing the brackets from both sides (first and then simplifying:

$$
\begin{aligned}
& 15(x-1)+4(x+3)=2(7+x) \\
\Rightarrow & 15 x-15+4 x+12=14+2 x \\
\Rightarrow & 19 x-3=2 x+14
\end{aligned}
$$

Page $\# 06$
Adding 3 both sides 6

$$
\begin{aligned}
& 19 x=2 x+14+3 \\
& \Rightarrow \quad 19 x=2 x+17
\end{aligned}
$$

Subtracting $2 x$ From both sides:

$$
\begin{aligned}
& 19 x-2 x=17 \\
& \Rightarrow \quad 17 x=17
\end{aligned}
$$

Dividing tooth sides with 17:

$$
\begin{aligned}
\frac{17 x}{17} & =\frac{17}{10} \\
x & =1 \quad \text { Ans }
\end{aligned}
$$

Q) 1036

Solve the following equation simultaneously using elimination

$$
\begin{aligned}
& 7 x+2 y=47 \quad \longrightarrow(1) \\
& 5 x-4 y=1 \quad \longrightarrow(2)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& 7 x+2 y=47 \longrightarrow(1) \\
& 5 x-4 y=1 \quad(2)
\end{aligned}
$$

Page $\# 07$
Multiply equation (1) by 2:

$$
14 x+4 y=94 \longrightarrow(3)
$$

Now add equation (2) and (3)

$$
\begin{aligned}
5 x-4 / y & =1 \\
+\quad 14 x+4 y & =94 \\
\hline 19 x & =95
\end{aligned}
$$

and so,

$$
\begin{aligned}
& 19 x=\frac{95}{19} 5 \\
& x=5
\end{aligned}
$$

Now put the value of x in equation (2) we get

$$
\begin{aligned}
& 5 x-4 y=1 \\
& 5(5)-4 y=1 \\
& 25-4 y=1 \\
& 25=4 y+1 \\
& 25-1=4 y
\end{aligned}
$$

Page \#08

$$
\Rightarrow \begin{aligned}
24 & =4 y \\
\Rightarrow \quad \frac{24}{4} & =\frac{4 y}{4} \\
\Rightarrow y & =6
\end{aligned}
$$

The solution is $x=5, y=6$

EN

