Department of Electrical Engineering Final Assignment Date: 23-06-2020

Course Detail								
Course Title:	Electro Magnetic	Field Theory		Module:	-	8th		
Instructor: <u>Sir</u>	Dr Rafiq Mansoor		Total Marks:	50	<u>.</u>			
		Student D	<u>etails</u>					

Name: <u>Kiramat Ullah</u>	Student ID:	13290	

Q1: Solve the following short Question	(a) (b)	 Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20m. The current carried by the semicircular of wire is 150A. A circular coil of radius 5 × 10⁻² m and with 40 turns is carrying a current of 0.25 A. Determine the magnetic field of the circular coil at the center. 	Marks 10 CLO 2 Marks 10 CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05m. 2amp is the reading of the current flowing through this closed loop.	
	(b)	Within the cylinder $\rho = 2$, $0 < z < 1$, the potential is given by $V = 100+50\rho+150\rho$ Sin ϕ V. (a) Find V, E, D, and at p (1, , 0.5) in free space. (b) How much charge lies within the cylinder?	Marks 08 CLO 2
Q3:	(a)	Given the time-varying magnetic field $B = (0.5 + 0.6 - 0.3)$) and a square filamentary loop with its corners at (2, 3, 0), (2,-3,0), and (-2,3,0) and (-2,-3,0), find the time-varying current flowing in the general direction if the total loop resistance is .	Marks 15 CLO 3

Student Name: Kiramat Ullah ID: 13290 Department: BE(E) Semester: 8 Subject: Electromagnetic Field Theory Teacher : Sir Dr Rafiq Mansoor

Kisamatullan (1) IDNO #13290 Question NO # 1 (Past A) Solve the following short questions: Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20m. The current caroried by the semicircular of wire is 150 A. Solution:-The radius of the semiciscular piece of usive = 0.2m Current carried by semiciscular piece 07 wire = 150 A Magnetic field is given as B = HONI The difference between Biot-savaot Law is given by REDMINOTE 9 PRO C○ AI QUAD CAMERA

JD NO #13290 Kixamatulla h (2) sin () V2 dI dB llaI 4A XX B = llo 82 YA 10 LIT TX lo 2 4A llo = 48 150 A 47×10 ·m A 1 0.20 M 2.4×10 -Ans O REDMI NOTE 9 PRO

88 REDMI NOTE 9 PRO Kizamatullah (3) IDNO#13290 QUESTION#1 Parst # B Answers A Cixcular coil of radius 5x10²m and with 40 turns is carrying a current of 0.25A. Determine the magnetic field of the circular coil at the center. Solution :-The radius of the circular coil = 5×10-2m Number of turns of the circular coil =40 . Current carried by the circular coil = 0.25A Magnetic field is given as: B = MONI 20 = 47×10-7 T.m/A (40)0.25A 2.50 × 10-2 m

Kisamatullah (4) ID NO #13290 1. 2×10-4 T Ans QUESTION NO # 2 PART #(A) Answer Compute the magnetic field of a long straight when that has a circular loop with a radius of 0.05m. 2 am is the reading of the current Howing through this closed loop. Solution :-Given that :-Radius = R = 0.05m I=2amp 10 = 4T x10-7 N/A2 O REDMI NOTE 9 PRO CO AI QUAD CAMERA

Kizamatullah (5) ID NO #13290 Amperes Law Formula is that: 6 B di 10 In this case of long straigt USixe dÍ 6 - 2TR = 2x 3.14 x 0.05 = 0.314 BÓ 10 -----B 10. ZAR =41×10++2 0.314 $\vec{B} = 8 \times 10^{-6}$ Ans, O REDMI NOTE 9 PRO

Kisamatullah (6) ID NO# 13290 QUESTION NO # 2 Past #(B) Answer Within the cylinder p=2, 0 < = <1, the potential is given by V = 100 + 50p + 150p sin ϕV . a) Find V, E, D and pV at $P(1, 60^{\circ}, 0.5)$ in Free space. b) How much charge lies within the cylinder. Solution :-= - VV A) $= -\frac{\partial V}{\partial P} \frac{\partial P}{\partial P} - \frac{1}{P} \frac{\partial V}{\partial \phi} \frac{\partial \phi}{\partial \phi}$ = - $[50 + 150 \sin \phi]ap - [150 \cos \phi]a\phi$ Evalute the above & at P to find Ep= -179.9ap - 75.0ap V/m NOW D = EOE, SO Dp = - 1.59ap -. 664ap nC/m2. O REDMINOTE 9 PRO CO AI QUAD CAMERA

Kisamatullah IDNO # 13290 (7)Then, RU=V.D) ø - 50 co C 50 + 150 sin \$ E0 = At P, this is PVP = -443 PC m3 FINS How much charge tes cylinder. within The b Jobution :-Integrate that 21 2 50e0 Pdpdddz 0 00 50)EO 21 -5.56nc Ans O REDMINOTE 9 PRO 🛇 🛛 AI QUAD CAMERA

IDN0#13290 Ksamatullah (8) QUESTION NO # 3 Past #(A) Answer a) Given the time - varying magnetic field B=(0. Sax +0. bay - 0.3az) cos sooot T and a sayure filamentsy loop with its comerss at (2,3,0), (2,-3,0), and (-2,3,0), Find the time varying current Flowing in the general ap direction total loop resistance is 400KS. Solution :-Then, $EMF = \oint E \cdot dl = -d\phi = -d$ Soop asea B·azda = d (0.3)(4)(6) cos Sooot O REDMI NOTE 9 PRO CO AI QUAD CAMERA

Kisamatullah (9) IÞN0# 13290 Where the loop normal is chosen as positive az, so that the path integral 708 positive The E is taken abound ab direction. Taking the desivative, we find (SOOD) SM Sooot so that EMF = . 7 = emf = -36000 sin 6000t $= 400 \times 10^{3}$ = - 90 sin Socot mA The O REDMI NOTE 9 PRO ○ AI QUAD CAMERA