FINAL TERM PAPER SUBJECT: BIO STATISTIC

SUBMITTED TO: DR.ANWAR SHAMIM

SUBMITTED BY: RABIA ZAMAN

DEPARTMENT: DT

IDNO\# 14180

Date: 22/06/2020

Question N0.1 Calculate the correlation co-efficient between X and Y.

n	Price (X)	Demand (Y)
1	3	25
2	4	24
3	5	20
4	6	20
5	7	19
6	8	17
7	9	16
8	10	13
9	11	10
10	13	8

Solution :
As we know that Correlation between X and Y is given below

$$
\begin{equation*}
r=\frac{n \sum x y-\sum x \cdot \sum y}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}\left(n \sum y^{2}-\left(\sum y\right)^{2}\right.}} \tag{1}
\end{equation*}
$$

n	Price (X)	Demand (Y)	$x^{\wedge} 2$	$y^{\wedge} 2$	$X^{*} Y$
1	3	25	9	625	75
2	4	24	16	576	96
3	5	20	25	400	100
4	6	20	36	400	120
5	7	19	49	361	133
6	8	17	64	289	136
7	9	16	81	256	144
8	10	13	100	169	130
9	11	10	121	100	110
10	13	8	169	64	104
Total	76	172	670	3240	1148

Now put all the values from table in equation no . 1

$$
\begin{gathered}
r=\frac{10 * 1148-76 * 172}{\sqrt{10 * 670-(76)^{2} *\left(10 * 3240-(172)^{2}\right.}} \\
r=-\frac{1592}{1613.067}=-0.988694
\end{gathered}
$$

The above value of r shows strongly negative correlation in price and demand of a particular commodity.

Question no.1(b)
The regression equation y on x is given below

$$
Y=a+b x
$$

Where

$$
a=\bar{y}-b \bar{x}
$$

and

$$
b=\frac{n \sum x y-\sum x * \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}
$$

N	X	y	XY	$\mathrm{x}^{\wedge} 2$
1	20	5	100	400
2	11	15	165	121
3	15	14	210	225
4	10	17	170	100
5	17	8	136	289
6	18	9	162	324
7	21	12	252	441
8	25	16	400	625
9	28	18	504	784
Summation	165	114	2099	3309

First we fine value of b

$$
\begin{gathered}
b=\frac{9 * 2099-165 * 114}{9 * 3309-(165)^{2}} \\
b=\frac{81}{2556}=0.0316
\end{gathered}
$$

Now we find value of a

$$
a=\bar{y}-b \bar{x}
$$

$$
\begin{gathered}
\bar{y}=12.6667 \\
\bar{x}=18.333 \\
a=12.6667-0.0316 * 18.333=12.40
\end{gathered}
$$

$$
Y=12.40+0.0316 X
$$

Now find the regression of X on Y

$$
X=a+b Y
$$

Where

$$
a=\bar{x}-b \bar{y}
$$

and

$$
b=\frac{n \sum x y-\sum x * \sum y}{n \sum y^{2}-\left(\sum y\right)^{2}}
$$

n	x	y	XY	$\mathrm{Y}^{\wedge} 2$
1	20	5	100	25
2	11	15	165	225
3	15	14	210	196
4	10	17	170	289
5	17	8	136	64
6	18	9	162	81
7	21	12	252	144
8	25	16	400	256
9	28	18	504	324
Summation	165	114	2099	1604

$$
\begin{gathered}
b=\frac{9 * 2099-165 * 114}{9 * 1604-(114)^{2}} \\
b=\frac{81}{1440}=0.05625
\end{gathered}
$$

Now we find value of a

$$
\begin{gathered}
a=\bar{y}-b \bar{x} \\
\bar{y}=12.6667 \\
\bar{x}=18.333 \\
a=18.333-0.05625 * 12.6667=17.62049 \\
X=17.62049+0.05625 Y
\end{gathered}
$$

Now to find different values of Y put the value of X in regression equation Y on X.

$$
Y=12.40+0.0316 X
$$

For $X=20,11,15,25,28$
For $X=20$

$$
Y=12.40+0.0316 * 20=13.032
$$

For X=11

$$
Y=12.40+0.0316 * 11=12.747
$$

For $X=15$

$$
Y=12.40+0.0316 * 15=12.874
$$

For $X=25$

$$
Y=12.40+0.0316 * 25=13.19
$$

For X=28

$$
Y=12.40+0.0316 * 28=13.2848
$$

Now to find different values of X put the value of X in regression equation X on Y.

$$
X=17.62049+0.05625 Y
$$

For $Y=5,15,9,12,16,18$

For $Y=5$

$$
X=17.62049+0.05625 * 5=17.901
$$

For $Y=15$

$$
X=17.62049+0.05625 * 15=18.4624
$$

For $Y=9$

$$
X=17.62049+0.05625 * 9=18.070
$$

For $Y=12$

$$
X=17.62049+0.05625 * 12=18.295
$$

For $Y=16$

$$
X=17.62049+0.05625 * 16=18.520
$$

For $Y=18$

$$
X=17.62049+0.05625 * 18=18.632
$$

Question no . 2

Find the following
a) A fair of coin is tossed 5 times. Find the probability of obtaining various number of heads
b) A and B play a game in which A's Probability of winning is $2 / 3$. In series of $\mathbf{1 0}$ games, what is the probability that A will win (i) at least four games.(ii) Exactly equal to $4 / 10$ games.(iii) Exactly equals to $\mathbf{1 1}$ games.(iv) $\mathbf{6}$ or more games

Solution :

As we know that when a coin is tossed it has two possible outcomes, Head or tail.
So, the probability of a head or tail is $p=\frac{1}{2}$. So here we are interested only in head so when a coin is tossed the probability of head is $p=\frac{1}{2}$

This probability remains the same for successive toss.

The successive tosses are independent

The coin is tossed 5 times.

Therefore the random value of X which denotes the number of head has a binomial distribution with $p=\frac{1}{2}$ and $n=5$. The possible value of X are $0,1,2,3,4,5$
$\mathrm{P}($ no head $)=P(X=0)\binom{5}{0}(1 / 2)^{0}(1 / 2)^{5}=1 \times(1 / 2)^{5}=\frac{1}{32}$
$\mathrm{P}(1$ head $)=P(X=1)\binom{5}{1}(1 / 2)^{1}(1 / 2)^{5-1}=5 \times(1 / 2)^{5}=\frac{5}{32}$
$\mathrm{P}(2$ heads $)=P(X=2)\binom{5}{2}(1 / 2)^{2}(1 / 2)^{5-2}=10 \times(1 / 2)^{5}=\frac{10}{32}$
$\mathrm{P}(3$ heads $)=P(X=3)\binom{5}{3}(1 / 2)^{3}(1 / 2)^{5-3}=10 \times(1 / 2)^{5}=\frac{10}{32}$
$\mathrm{P}(4$ heads $)=P(X=4)\binom{5}{4}(1 / 2)^{4}(1 / 2)^{5-4}=5 \times(1 / 2)^{5}=\frac{5}{32}$
$\mathrm{P}(5$ heads $)=P(X=5)\binom{5}{4}(1 / 2)^{5}(1 / 2)^{5-5}=1 \times(1 / 2)^{5}=\frac{1}{32}$
These probability can also be obtained by using binomial probability distribution by expanding the binomial probability distribuiton $\left(\frac{1}{2}+\frac{1}{2}\right)^{5}$

x	0	1	2	3	4	5
$f(x)$	$1 / 32$	$5 / 32$	$10 / 32$	$10 / 32$	$5 / 32$	$1 / 32$

Part (b)

Given data
Total number of games $=10$
Probability of $A^{\prime} s$ win $=P(A)=2 / 3=p$
Probability of $B^{\prime} s$ win $=P(A)=1 / 3=q$
The successive games are independent won of lost
Let X denote the number of games won by A then

(i) A will win at least 4 games.

$$
\begin{gathered}
P(x \geq 4)=1-P(x \leq 3) \\
P(x \geq 4)=1-(P(x \leq 3+P(x \leq 2)+P(x \leq 1)+P(x \leq 0)) \\
P(x \geq 4)=1-\binom{10}{3}(2 / 3)^{3}\left(\frac{1}{3}\right)^{7}+\binom{10}{2}(2 / 3)^{2}\left(\frac{1}{3}\right)^{8}+\binom{10}{1}(2 / 3)^{1}\left(\frac{1}{3}\right)^{9} \\
+\binom{10}{0}(2 / 3)^{0}\left(\frac{1}{3}\right)^{10} \\
P(x \geq 4)=1-(0.01625+0.000304+0.000338+0.0000169)) \\
P(x \geq 4)=0.98309
\end{gathered}
$$

$$
P(x=4)=\binom{10}{4}(2 / 3)^{4}\left(\frac{1}{3}\right)^{4}=\frac{1120}{2187}=0.512117
$$

(iii) We cannot find the probability of exactly equal to 11 games because total number of games is equal to 10.
(iv) 6 or more games

$$
\begin{aligned}
P(x \geq 6)= & \binom{10}{6}(2 / 3)^{6}\left(\frac{1}{3}\right)^{4}+\binom{10}{7}(2 / 3)^{7}\left(\frac{1}{3}\right)^{3}+\binom{10}{8}(2 / 3)^{8}\left(\frac{1}{3}\right)^{2} \\
& +\binom{10}{9}(2 / 3)^{9}\left(\frac{1}{3}\right)^{1}+\binom{10}{10}(2 / 3)^{10}\left(\frac{1}{3}\right)^{0}
\end{aligned}
$$

$$
P(x \geq 6)=0.2276+0.2601+0.1950+0.0867+0.01734=0.7867
$$

Quesiton no 3

The ungrouped frequency distribution is given below

n	Tally	Frequency							
0	$\\|$	01							
1	$\\|\\|\\|$	04							
2	$\\|\\|\\|\\|\\|$	08							
3	$\\|\\|\\|\\|\\|\\|\\|$	11							
4	$\\|\\|\\|\\|\\|$	08							
5	$\\|\\|\\|$	05							
6	$\\|\\|\\|$	04							
7	$\\|\\|$	03							
8	$\\|\\|$	02							
9	$\\|$	01							
10	$\\|\\|$	03							
Total		50							

The group frequency distribution is given below
Maximum value $=10$
Minimum value $=0$

Range $=10-0=10$
Number of classes $\quad k=1+3.3 \log N$

$$
\begin{gathered}
k=1+3.3 \log (50) \\
k=1+3.3 * 1.6989=6.6066=6
\end{gathered}
$$

Class interval $=$ Range $/$ Number of classes $=10 / 6=1.66=2$

The group distribution table is given below

No.of classes	Classes	Frequency
1	$0-1$	5
2	$2-3$	19
3	$4-5$	13
4	$6-7$	7
5	$8-9$	3
6	$10-11$	3
	Total	50

