Department of Electrical Engineering Mid – Term Assignment Spring 2020 Date: 20/04/2020

Course Details

Course Title: Instructor:		e Title: ctor:	Microcontroller Systems & Inter	fac	ing Module:06 Total Marks:30)
			Student D	eta	<u>ills</u>	
Na	me	:	Asfandyar Awais		Student ID:114	61
01	(a)	1) Ohm's	Law is an equation that relates the follow	ving	electrical concents:	Marks 10
Z ¹¹	(u)	a. Voltag	e, current and resistance	b.	Resistance and reluctance	CLO 1
		c. Currer	nt, power and voltage	d.	Voltage and current	
		2) If a con been co	nputer uses a 200 W power supply and i nsumed?	t is	activated for 45 minutes, how much energy has	
		a. 540 M	J	b.	5.4 kJ	
		c. None	of these answers	d.	540 kJ	
		3) You we	ould like to set up a circuit with 2 identi	cal	light bulbs and a battery. You hesitate between	
		putting them in series or in parallel. The circuit that dissipates the most power is:				
		a. The sa	me for light bulbs in series and parallel	b.	Light bulbs in series	
		c. Light	bulbs in parallel	d.	Not possible to determine from the given information.	
		4) For the circuit discussed in Question 3, the circuit for which the lights are the brightest is:				
		a. Light	oulbs in parallel	b.	The same for light bulbs in series and parallel	
		c. Light	bulbs in series	d.	Not possible to determine from the given information	

		5) The circuit for which the battery will last the longest is			
		a. The same for light bulbs in series and parallel b. Light bulbs in series			
		c. Light bulbs in parallel d. Not possible to determine from the given			
		information			
Q2.	(a)	A parking lot must be automated using an Arduino by counting each car entering the lot and leaving the			
		lot. The lot has a total space for 8 cars at a time. On each parking of a car a RED led must be visible to			
		show the space has been taken. A GREEN led must be visible to show the space is vacant for a car.			
		Write the code in C-language and draw the circuit diagram.			
Q3.	(a)	A counter must be implemented using an Arduino for a room, whenever a person enters the room and			
		presses a button the counter must the counter and display the amount on two 7 segment displays,	CLO 2		
		whenever the person leaves the room and presses the second button the counter must be decremented			
		and displayed on the 7 segment display. Write the code in C-language and draw the circuit diagram.			

80 0 0 0 0 0 0

Plasmer to Const int parking In = 0; Const int parking In = 0; 2 2: Const Const Parkinjout = 9; led 1 = 1; int Const int led 2 = 2; Const int Const leel 3 23, Const int led 9 24 Const int led 5 = 5; int led 6 26, Const int led 7 = 7; Const int led 8 28; int senser Value, bright; Void Setup () { Schal begin (9600); PinMode (Parking In, INPUT); PinMode (Parking Out, INPUT); PinMode (led1, OUTPUT); Pin Mode (ledz; OUTPUT); Pinklode (lad 3; OUTPUT); PINNade Cledy; OUTPUT); PinMade Cled5; OUTPUT); PinMode (led6; OUTPUT); Pin Mode (leda; OUTPUT); Pin Mode (led 8; OUT PUT); int available Packing 28; 3 Joid loop () q Car car In z analog Read (parking In); car Out - analog Read (parking Out); if (carlo) available Parking ++; 3 25

3 else if (arout) awailable Packing --; fer(ledon=1; ledon <= 8; ledon+) analog White (led, High); analog White (led, HIGH); 52 2

Const int and, const int bed const int de bi const int re 6 const int f = 2 const int J = \$ 1 bool blun + fale, Const int Inclusion Pine to: Const int Dreballon Pine (1) Int button Plush counter = 0) int inclustion state = 0; int last incluston state = 0; int Dec batton state = 0; int last Der butten state = 0; Void Setup () ? Pin Mode Ca, Orapid OUTPUTS PinNode (b), OUTAUT); Pin rede (C, OVTPUT); PinModecd, OUTPUT); PinAlode(e, OUTPUT), Pin Made (f. OUTPUT), Pinnlode (g, OUTPUT); Pinnlade (Inchutton Pin, INPUT_POLLOP), Pin Mode (Dec button Pin, INPUT_PULLUP); Serial begin (9600)+ display Digit (button Pash Counted). N Inclutton State = digital Raid Clinebutton Pink Vaid loop () 8 De button State & digital Read (Dec button An), (check Inc Batton Press (); Check De Button Press ();

it (bPress) { 5 6 Press z false, turn Off (); diplay Piget (button Push (ountex); for (int izo; iclo, itt) display Digit (i); delay (1000); turnoff; S Void check Inc Button Press () Se If (Incouttonstate 12 last button state) if (Inchatton state== how) { b Press 2 true; if (button Rush counters 4) button Push counter 20; Secial Prent In ("on"); 3 else { Secial Print [In("Off); 3 delay (50); last Inchutton State 2 Inchitton State; 3 Void chark Per Button Press() 3 if (Perbuttonstate != last Derbutton state) { if (Derbuttonstate zzhow) { ppress 2 true; button Push Counter -- ;

of Chutton Plush Counter = 0) Inston Push Counter = 9; Secial - Print in Con?); else ? Second printer ("Ost"); 3 detay (50); 2 last Dec button State = Dec batton Scate; Void duplay Digit (int digit) 3 1+ Colugit != 1 88 digit 1=9) digital white Ca, Hight - HIMH 27 Coligit 1=5 88 digit 1=6) digital white Cb, Highin HIGH if (digit 1-2) digital white (GiHiGiHI); if (digit 1 =1 && digit 1=4 && digit (=7) digital Write (d, HIGH); if (digit = 2 11 digit = = 6 11 digit = 28 11 digit = 20) if Cdigit != 1 88 digit 1=2 88 digit != 3 88 digit != 7) digital white (f, HIGH); 17 (digit 120 88 digit 121 88 digit 1=7) digital Write (JoHIGIH); 2 Void turnoff() digital White (a, LOW); digital Nrite (b, NOW); digital white ((, how); digital white (d, how);

