Department of Electrical
 Engineering
 Final Exam
 Assignment Date:
 27/06/2020 Course
 Details

Course Title:
Digital Signal Processing
Module:
6th Instructor: \qquad Total 50
Marks:

Student

Details

Name:
Syed M Zahoor
Student ID: 12595

Q1.	(a)	Determine the response $y(n), n \geq 0$, of the system described by the second order difference equation $y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$ To the input $(n)=(-1)^{n} u(n)$. And the initial conditions are $\mathrm{y}(-1)=\mathrm{y}(-2)=0$.	Marks 7
			CLO
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.$y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)$	Marks 7
			CLO
Q2.	(a)	Determine the causal signal $\mathrm{x}(\mathrm{n})$ having the z -transform $x(z)=\begin{gathered} 1 \\ \left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2} \end{gathered}$ (Hint: Take inverse z-transform using partial fraction method)	Marks 6
			CLO
	(b)	Evaluate the inverse z- transform using the complex inversion integral$X(z)=\begin{array}{cc} 1 \\ 1-a z^{-1} \end{array} \quad\|z\|>\|a\|$	Marks 6
			${ }_{2}^{\text {CLO }}$
Q. 3	(a)	A two- pole low pass filter has the system response $H(z)=\begin{gathered} b_{o} \\ \left(1-p z^{-1}\right)^{2} \end{gathered}$ Determine the values of b_{o} and p such that the frequency response $H(\omega)$ satisfies the condition $\mathrm{H}(0)=1$ and $\left.\mid H_{4}^{-\pi}\right)\left.\right\|^{2}=\frac{1}{2}$.	Marks 6
			CLO

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi / 2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in ${ }_{\sqrt{2}}^{1}$ at $\omega=4 \pi / 9$.	Marks 6
			$\begin{gathered} \text { CLO } \\ 3 \end{gathered}$
Q 4	(a)	A finite duration sequence of Length L is given as $x(n)=\left\{\begin{array}{l} 1, \quad 0 \leq n \leq L-1 \\ 0, \quad \text { otherwise } \end{array}\right.$ Determine the N - point DFT of this sequence for $\mathrm{N} \geq \mathrm{L}$	Marks 6
			$\begin{gathered} \text { CLO } \\ 2 \end{gathered}$
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
		$\begin{aligned} & x_{1}(n)=\left\{\begin{array}{c} \uparrow \\ , 1,2,1\} \\ x_{2}(n)=\left\{{ }^{1} 2,3,4\right\} \end{array}\right. \end{aligned}$	$\begin{gathered} \text { CLO } \\ 2 \end{gathered}$

Name \& Syed.M. Zahoor DSP
ID $\quad 12595 \quad 27 / 06 / 2020$
(a) Determine the response $y(n), n \geqslant 0$. of the system described by the second order difference equation

$$
\begin{aligned}
& y(n)-4 y(n-1)+4 y(n-2) \\
& =x(n-1)
\end{aligned}
$$

To the Input $x(n)=(-1)^{n} u(n)$ and The initial conditions are $y(-2)=y(-2)=0$

Solution
The chatadaristic Equation

$$
\begin{aligned}
& 1^{2}-41+4=0 \\
& 1=2,2 H_{\text {nne }} \\
& x_{n}(n)=c_{1} 2^{n}+c_{2 n} 2^{n}
\end{aligned}
$$

There particular solution

$$
y_{p}(n)=k(-1)^{n} u(n)
$$

Subtitulirg the Solutim into the difference equedim we obtain

$$
\begin{gathered}
k(-1)^{n} u(n)-4 k(-1)^{n-2} u(n-1)+4 k(-1)^{n-2} u(n-2) \\
=(-1)^{n} u(n)-(-1)^{n-2} u(n-1)
\end{gathered}
$$

for $n=2, k(1+4+4)=2 \Rightarrow k=\frac{2}{9}$
The total Solytion is

$$
U(a)=\left[c_{12} 2^{n}+c_{2} n 2^{n}+\frac{2}{9}(-1)^{n}\right] u(n)
$$

form The Iritial condtions, we abtain $Y(0)=1, y(1)=2$ then

$$
\begin{aligned}
& c_{1}+\frac{1}{9}=1 \\
& \Rightarrow c_{1}=\frac{7}{9} \\
& 2 c_{1}+2 c_{2}=\frac{2}{9}=2 \\
& \Rightarrow c_{2}=\frac{1}{3}
\end{aligned}
$$

(1)

The chatactenstic equution

$$
\begin{aligned}
& \lambda^{2}=0.7 \lambda+0 A=0 \\
& \lambda=\frac{1}{2} \cdot \frac{1}{5}
\end{aligned}
$$

$$
y_{n}(\Omega)=c_{1} \frac{x^{x}}{2}+c_{2} \frac{j^{x}}{5}
$$

with $x(\eta)=f(x)$ we have

$$
y=(6)=2
$$

$$
y(1)=0.77(0) \Rightarrow(1)=1.4
$$

Hence

$$
\begin{aligned}
& e_{1}+e_{2}=2 \xi \\
& \frac{1}{2} c_{1}+\frac{1}{5}=1 \cdot 4=\frac{7}{5} \\
\Rightarrow & c_{1}+\frac{2}{5} c_{2}=\frac{14}{5}
\end{aligned}
$$

The equation yield

$$
\begin{gathered}
e_{1}=\frac{10}{3}, c i=\frac{4}{3} \\
h(n)=\left[\frac{10}{3}\left(\frac{1}{2}\right)^{n}-\frac{4}{3}\left(\frac{1}{5}\right)^{n}\right] u(n)
\end{gathered}
$$

The step lespange as

$$
\begin{aligned}
& Q(n)=\sum_{n=0}^{n}, n=(n-k) \\
& =\frac{10 \sum_{k}^{n}}{3 k=0}\left(\frac{1}{2}\right) n-k-\frac{4}{3} \sum_{k=0}^{n}\left(\frac{1}{5}\right) n-k \\
& =\frac{10}{3}\left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} 2 k-\frac{4}{3}\left(\frac{1}{5}\right)^{n} \sum_{k=0}^{n} 5^{k} \\
& =\frac{10}{3}\left(\frac{1^{n}}{2}\left(2^{n+1}-1\right) 4(n)-\frac{1}{3}\left(\frac{1}{5}(5+1) u(n)\right.\right.
\end{aligned}
$$

(2) Determine the Causal signal $x(n)$ having the z-transform

$$
x(z)=\frac{1}{1-2 z^{0-1}\left(1-z^{-1}\right)^{2}}
$$

Take Invere z - Transform using partial fraction method:

Solution

$$
x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-2^{-1}\right)^{2}}
$$

As we know the nt

$$
\begin{aligned}
& =\frac{A}{\left(1-2 z^{-9}\right)}+\frac{B}{\left(1-z^{-1}\right)}+\frac{C}{\left(1-z^{-2}\right)^{2}} \\
& A=4, \quad B=-3, \quad C=-1 \\
& \text { Hence, } x(n)=\left[4\left[(2)^{n}-3-n\right] u(n)\right.
\end{aligned}
$$

Q(2)
(b) Evaluate the Inverse z-transform using The complex inversion Integral.

$$
X(z)=\frac{1}{1-a z^{7}} \quad|z|>|a|
$$

Solution:
we have

$$
\begin{aligned}
x(n) & =\frac{1}{2 \pi j} \oint_{2} \frac{z^{n-1}}{1-a z^{-2}} d z \\
& =\frac{1}{2 \pi j} \oint_{c} \frac{z^{n} d z}{z-a}
\end{aligned}
$$

Where c is a ercut at radius greater than (al. we shall evaluate this Integral using with $f(z)=z^{n}$ we distinguish two cases.
(1) If $n \geqslant 0 \quad f(x)$ has only zeros and hence no poles inside c. The only inside c is $z=a$ hence.
(2) If $n<0 \cdot f(z)=z^{n}$ has an $n^{\text {th }}$ order pole at $z=0$ which aldo inside C.

Thus There are contributions from both poles. for $n=-1$ we have

$$
\begin{gathered}
x(-1)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{z(z-a)} d z \\
=\left.\frac{1}{z-a}\right|_{z_{\infty}}+\left.\frac{1}{z}\right|_{z=a}=0
\end{gathered}
$$

if $n=-2$ we have

$$
\begin{aligned}
& x(-2)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{z^{2}(z-a)} d z \\
& =\frac{d}{d z}\left(\frac{1}{z-a}\right) \frac{b}{z=0}+\left.\frac{1}{z^{2}}\right|_{z=a}=0
\end{aligned}
$$

By continuing in the same wal we can show that $x(n)=0$ for $x<0$ Thus

$$
x(n)=a^{n} u(n)
$$

Qua) A two pole low pass filter has The System response

$$
\begin{aligned}
& H(z)=\frac{b_{0}}{\left(1-p z^{-s}\right)^{2}} \\
& H(0)=1 \text { and }\left|H\left(\frac{\pi}{4}\right)\right| z=\frac{1}{2}
\end{aligned}
$$

Solution:
a two loupes filter

Now the values bo and P

$$
\begin{aligned}
& H(0)=1 \\
&H(\pi / 4))^{2}=\frac{1}{2} \\
& \text { At } W=0 \text { we have } \\
& H(0)=\frac{b_{0}}{(1-p)^{2}}=1
\end{aligned}
$$

Hence

$$
b c=(1-P)^{2}
$$

$$
A t=\pi / 4
$$

$$
\begin{aligned}
H(\pi / 4) & =\frac{(1-p)^{2}}{1-1 e^{i n(1) 2}} \\
& =\frac{1-p^{2}}{1-p \cos (\pi / 4)+j p \sin (\pi / 4)^{2}} \\
& =\frac{11-p)^{2}}{(1-p \sqrt{2}+j p / \sqrt{2})^{2}}
\end{aligned}
$$

Hence

$$
\frac{(1-p)^{4}}{\left[(1-P \mid \sqrt{2})^{2}+P^{2} \mid 2\right)^{2}}=\frac{1}{2}
$$

or Equivalently

$$
\sqrt{2}(1-p)^{2}=1+p^{2}-\sqrt{2} p
$$

The value of $P=0.32$ Satisfies the equation- Conseyunty. The system function for The desired sifter is

$$
H z=\frac{0.46}{\left(1-Q \cdot 3 z^{-1}\right)^{2}}
$$

Solution?
Give Data:

$$
\begin{aligned}
& \omega=\pi / 2 \\
& \omega=0 \text { and } \omega=\pi \\
& \quad 1 / \sqrt{2} \text { at } \omega=4 \pi / 9
\end{aligned}
$$

By The filter requirement:

$$
\begin{aligned}
\text { Poles } & =p_{1.2}=\gamma e^{ \pm i v / 2} \\
\text { Zeroes } & =z_{1,2}= \pm \\
\Rightarrow H(z) & =G \frac{(z-1)(z+1)}{(z-j)(z+j 1)} \\
& =G \frac{z^{2}-1}{z^{2}+\gamma^{2}} \\
& =G=\frac{2}{-1+\gamma^{2}} \\
& =G=\frac{1-\gamma^{2}}{2}
\end{aligned}
$$

To set i use $t \frac{4 \pi}{9}=1 / \sqrt{2}$ requirement.

Now

$$
\begin{aligned}
\left(H\left(\frac{4 \pi}{9}\right)^{2}\right. & =\frac{\left(1-1^{2}\right)^{2}}{4} \frac{2-2 \cos (8 \pi / 9)}{\left.1+r^{4}+2\right)^{2}(\cos (8 \pi / q)} \\
& =1 / 2
\end{aligned}
$$

Evaluating gives $r^{2}=0.7$ Therefore

$$
H(z)=0.15 \frac{1-z^{2}}{1+0.7 z^{-2}}
$$

Q 4
(A) A finite duration sequence of length L given as

$$
x(n)=\left\{\begin{array}{lr}
1 & 0 \leq n \leq L-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine The point DFT of This Sequence for $N \geqslant L$

Solution:
As we know that
The fourier Transform of This sequence is

$$
\begin{aligned}
X(\omega) & =\sum_{n=2}^{L-1} x(n) e^{-j \omega} \\
& =\sum_{n=1}^{L=2} e^{-j \omega}=\frac{1-e^{-j \omega L}}{1-e^{-j \omega}} \\
& =\frac{\sin (\omega L / 2)}{\sin (\omega / 2)} e^{-j \omega x / L / \omega}
\end{aligned}
$$

for $L=10$ The N paint DFT of $x(n)$ is simple $X(w)$ evaluated at the Set of N equally spaced frepuenses $W_{k}=2 \pi k / N, k=0,1 \ldots N-1$ Hence

Hence

$$
\begin{aligned}
X(k) & =\frac{1-e^{-j 2 \pi k L / N}}{1-e^{j 2 \pi k / N}} \\
& =\frac{\sin (\pi k L / N)}{\sin (\pi k / N)} e^{-j \pi k(L-1) N}
\end{aligned}
$$

24(B) Perform The circular convolution of the following two sequence. Solve The problem step by step:

$$
\begin{aligned}
& X_{1}(n)= \begin{cases}2 & 1,2,1\} \\
X_{2}(n)=\left\{\frac{1}{9}\right. & 2,3,4\}\end{cases}
\end{aligned}
$$

Solutions
Each Sequence Consists of four nonzero point.
now $x_{3}(m)$ is obtained by erralaly convolving $X_{1}(n) X_{2}(n)$ as specified by Beginning with $m=0$ we have

$$
x_{3}(0)=\sum_{n=1}^{3} x_{1}(n) x_{2}((-n)) N
$$

$X_{2}((-n)) 4$ is simply the Sequence $x_{2}(n)$ folder and graphed on a circle as illustrated in other wis The folded sequence is sample $x_{2}(n)$ graphed in a clockwise directing

$$
x_{3}(0)=4
$$

for $m=1$ we have,

$$
x_{3}(1)=\sum_{n=0}^{2} x_{1}(n) x_{2}(1-n) 4
$$

$$
\begin{aligned}
& \left.x_{2}(1-4)\right) y \\
& x_{2}((-n)) 4 \\
& \quad x_{3}(1)=16
\end{aligned}
$$

for $m=2$ we have

$$
x_{3}(2)=\sum_{n=0}^{3} x_{1}(n) x_{2}(2-n)_{4}
$$

Now $x_{2}(2-n)_{4}$ is folded sequent Rotated two unit of time in the counterclockwise direction. The resultant sequence is illustrated

(a)

(b)
(c)

folded sequence yolated by one unit in time.

folded sequence rotated by Three unit in time.

Product sequin.

product sequire
(d)

Q

along with the product sequence. $x_{1}(n) x_{2}(2-n) ? 4$
By Summing the fore forms in the product Sequences, we obtain.

$$
x_{3}(2)=14
$$

for $m=3$ we have

$$
\begin{aligned}
& \left.x_{3}(3)=\sum_{n=0}^{3} x_{1}(n) x_{2}(3-n)\right)_{4} \\
& x_{2}((1-m)) 9 \\
& \times 2(3-n) 4 \\
& \text { Now } \\
& x(3)=16 \\
& m=3 \\
& x_{3}(n)=\{14,16,14,16\}
\end{aligned}
$$

