NAME:

ID SUBJECT

SEMESTER

PROGRAM

THEORY OF AUTOMATA

6958
$6^{\text {TH }}$

BS(CS)

Q\#1. Keeping in view the Kleene's Theorem, proof for any language S.

S+= (S+)+

Ans:

$S^{+}=\left(S^{+}\right)^{+}$
Solution: since S^{+}generates all possible strings that can be obtained by concatenation the strings of S, so $\left(S^{+}\right)^{+}$generates all possible strings that can be obtained by concatenating the strings of S^{+}will not generate any new string.

Hence $\left(\mathrm{S}^{+}\right)^{+}=\mathrm{S}^{+}$so,
$\mathrm{S}^{++} \subset \mathrm{S}^{+} \longrightarrow \mathrm{EQ1}$
Also we know that
$\mathrm{A} \subset \mathrm{A}^{+} \longrightarrow \mathrm{EQa}$
Now, if in equation (EQa) we replace A with S^{+}we get
$\mathrm{S}^{+} \subset \mathrm{S}^{++}$ \qquad
Form both the EQ1 and EQ2 proved that
$S^{+}=S^{++}$
$\left(S^{+}\right)^{+}=S^{+}$
Solution: since S^{+}generates all possible strings that can be obtained by concatenating the strings of S , so $\left(\mathrm{S}^{+}\right)^{+}$generates all possible strings
that can be obtained by concatenating the strings of S^{+}, will not generate any new string.

Hence $\left(S^{+}\right)^{+}=S^{+}$

Q\#2. How many words does S^{*} will have of length 3,4 and 5 , if $S=\left\{\begin{array}{ll}a b & b a\end{array}\right\}$
(Design S* and then write answers on the basis of words of \mathbf{S}^{*})
Ans:
$S^{*}=\{\wedge, a b, b a, ~ a b a b, b a a b, b a b a, ~ a b a b a b, ~ a b a b b a, ~ a b b a b a, ~ b a b a b a$, babaab, baabba, baabab,........\}

Total length is $=\mathrm{n}^{\mathrm{n}}$
Total number of $4=2^{2}=16$
For length 3 and 5 we can't find length because it odd and we have language fo even numbers.

Q\#3. Fill in the blanks.

1. A dictionary is arranged in \qquad Alphbetical \qquad order.
2. + is called \qquad positive \qquad instances.
3. $*$ is called \qquad Kleene \qquad instances.
4. ? is called \qquad zero/one \qquad instances.
5. A Formal Language is game of \qquad focus \qquad on paper.
6. \wedge is included in \qquad Kleene \qquad closure.
7. \qquad Palindrome \qquad is a word whose reverse is equal to itself.
8. __Concatenation \qquad is an operation in which symbols are placed side by side.
9. $\{a \quad b\}=\{b$
a\} for \qquad Matrice \qquad operation.
10. Two words having same symbols in same order are called
\qquad same \qquad words.
