
Name: Taufeeq Ahmad
ID : 6856
Program BS SE
Section : B
Date 23-06-2020

Q1: Draw Use Case diagram
Propose a use case diagram for a vending machine that sells beverages
and snacks.
Make use of inclusion and extension associations and remember that a
vending.
Ans. Model with a class diagram the following System: Vending Machine.

A vending machine sells small, packaged, ready to eat items (chocolate bars, cookies, candies, etc.).
Each item has a price and a name. A customer can buy an item, using a smart card (issued by the
vending machine company) to pay for it. No other payment forms (i.e. cash, credit card) are

allowed. The smart card records on it the amount of money available. The functions supported by
the system are:

Sell an item (choose from a list of items, pay item, distribute item)

Recharge the machine

Set up the machine (define items sold and price of items)

Monitor the machine (number of items sold, number of items sold per type, total revenue)

The system can be used by a customer, a maintenance employee (who recharges items in the
machines), an administrator (who sets up the machine).

POSSIBLE SOLUTION

Vending Machine

 Smart Card Reader

+ id

+ capacity = N

+ numberSoldItems

1 1

+ numberSoldItemsPerType

+ boolean:
checkCardValidity() + totalRevenue

 + readCardAmount ()

+ setUp()

 + updateCardAmount ()

+ insertCard()

+ monitor ()

+ releaseCard()

+ reCharge(item, qty)

+ checkProduct (item)

+ sellItem(item)

+ chooseItem(Item)

1

1…N

Item

+ name

+ price

+ qty

+ getPrice()

+ boolean: isAvailable ()

Even if not required by the text the

attributes id and capacity may be useful.

Q2: Draw Sequence Diagram
 Model a scenario of the Withdraw Money use case of a Bank ATM system. The
user is
able to make withdrawal of money. The system employs a standard procedure of
validating the card and account holder’s password.
Ans.

Q3: Draw State chart diagram
ATM is initially turned off. After the power is turned on, ATM performs startup action
and enters Self Test state. If the test fails, ATM goes into Out of Service state,
otherwise
transition to the Idle state. In this state ATM waits for customer interaction.
The ATM state changes from Idle to Serving Customer when the customer inserts
banking or credit card in the ATM's card reader. On entering the Serving Customer
state
that is composed of basic ATM functions i.e authentication, money withdrawal etc.

Ans.

Q4: Draw Class Diagram
Illustrate Class diagram for ATM Machine. The various Classes involved in the
system
are: Bank, Account, Customer Info, Debit Card, Current Account, Saving Account,
ATM Info, ATM Transaction, Withdraw Transaction, Change Pin, Transfer Money,
Check Balance. The Bank maintains personal and ATM information of each
customer. The customer can access their account using Debit Card issued by the
Bank. In this system there could be two types of Account: Current Account and
Saving Account. Both use to share many of the properties and methods. The ATM
Machine can perform multiple transactions such as Withdrawing cash, change pin,
check
balance and Transfer Money to each account.
Ans.

Q5: Design Pattern
Suppose we have the following java files. Identify the pattern also Considering the
java
files draw class diagram.

Ans. Decorator pattern allows a user to add new functionality to an existing object without

altering its structure. This type of design pattern comes under structural pattern as this pattern
acts as a wrapper to existing class.

This pattern creates a decorator class which wraps the original class and provides additional
functionality keeping class methods signature intact.

We are demonstrating the use of decorator pattern via following example in which we will
decorate a shape with some color without alter shape class.

Implementation

We're going to create a Shape interface and concrete classes implementing the Shape interface.
We will then create an abstract decorator class ShapeDecorator implementing
the Shape interface and having Shape object as its instance variable.

RedShapeDecorator is concrete class implementing ShapeDecorator.

DecoratorPatternDemo, our demo class will use RedShapeDecorator to decorate Shape objects.

Step 1

Create an interface.

Shape.java

public interface Shape {

 void draw();

}

Step 2

Create concrete classes implementing the same interface.

Rectangle.java

public class Rectangle implements Shape {

 @Override

 public void draw() {

 System.out.println("Shape: Rectangle");

 }

}

Circle.java

public class Circle implements Shape {

 @Override

 public void draw() {

 System.out.println("Shape: Circle");

 }

}

Step 3

Create abstract decorator class implementing the Shape interface.

ShapeDecorator.java

public abstract class ShapeDecorator implements Shape {

 protected Shape decoratedShape;

 public ShapeDecorator(Shape decoratedShape){

 this.decoratedShape = decoratedShape;

 }

 public void draw(){

 decoratedShape.draw();

 }

}

Step 4

Create concrete decorator class extending the ShapeDecorator class.

RedShapeDecorator.java

public class RedShapeDecorator extends ShapeDecorator {

 public RedShapeDecorator(Shape decoratedShape) {

 super(decoratedShape);

 }

 @Override

 public void draw() {

 decoratedShape.draw();

 setRedBorder(decoratedShape);

 }

 private void setRedBorder(Shape decoratedShape){

 System.out.println("Border Color: Red");

 }

}

Step 5

Use the RedShapeDecorator to decorate Shape objects.

DecoratorPatternDemo.java

public class DecoratorPatternDemo {

 public static void main(String[] args) {

 Shape circle = new Circle();

 Shape redCircle = new RedShapeDecorator(new Circle());

 Shape redRectangle = new RedShapeDecorator(new Rectangle());

 System.out.println("Circle with normal border");

 circle.draw();

 System.out.println("\nCircle of red border");

 redCircle.draw();

 System.out.println("\nRectangle of red border");

 redRectangle.draw();

 }

}

Step 6

Verify the output.

Circle with normal border

Shape: Circle

Circle of red border

Shape: Circle

Border Color: Red

Rectangle of red border

Shape: Rectangle

Border Color: Red

	Implementation
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

