

**Student Name: Saad Bin Tariq** 

ID: 5534

Department: BE(E)

**Subject: Electromagnetic Field (EMF)** 

**Teacher: Sir Dr Rafiq Mansoor** 

Assignment: Solve problem 4.1, 4.2, 4.3, 4.5, and 4.7 of course book.

| SAAD BEN TARER ID 5534 PANO# OIL                                                                          |  |
|-----------------------------------------------------------------------------------------------------------|--|
| 7-3) is airea to E at P(P=2, \$\phi=40)                                                                   |  |
| + 300 x V/m. Determine the uncremental                                                                    |  |
| Work require to move a 20 Uc. Charge  a distance of 6 Um:                                                 |  |
| In the direction of ap: The incremental work is given                                                     |  |
| by $dw = -q/E dl$ , where in this case $dl = dp 2p = 6 \times 10^{-6}$                                    |  |
| $dw = -(20 \times 10^{-6}c) (100 \text{V/m}) (6 \times 10^{-6}m) = -12 \times 10^{-9}j = [-12nJ]$         |  |
| B):-  In the direction of 29:-  In this case dL = 24929 = 6×10-629                                        |  |
| and so aw = -(x0x10 -/ (-x00) (6x10 -)                                                                    |  |
| $= 2.4 \times 10^{-8} \text{ J}$ $= 24n\text{ J}$ (C):-                                                   |  |
| Here d6 = dzaz = 6x 106az 4 50<br>dw = - (20x106) (300) (6x106) = -3.8x108 T                              |  |
| $dw = -(20 \times 10^{\circ})(300)(6 \times 10^{\circ}) = -3.8 \times 10^{8} \text{ T}$ $= 36 \text{ nJ}$ |  |

Sead BIN THERE ID 5334 BY NOH OR Here de- 6x10° at where 2.E = 1002p - 2000p + 3000z = 0.367ap [100° + 200° + 300°) 1/2 0.53520 + 0.802 az dw = -(20 x 10-6) (1002p - 200ap - 300az] = =-6[--44.9] In the direction of G = 22x - 32yt4az: In this case dl=6x10626 Where 26 = Rax - 324 + 402 (22+ 324 42)2 = 0.3712-0.557ay+0.743az dw = - (20x10-6)[100ap-20020+300az]. [6.37/02 - 0.5570y + 0.74302] (6x10-6) = -(20x 106) [37 1(ap.ax) - 55.7(ap.ay) - 74.2(202) +111.4 (ap. ay) + 222.9) [6x10-6]

SAADBIN TARIQ ID 5534 PANOHO3. 4.2:-= 400ax 300ay - 560az In the neighborhood of point P(62,3) and the incremental work done in moving a 4-c charge in distance of Imm in the direction specified by (a): ax + 2y + 2z: dw = - 9, Edl = -4(400ax-300ay+500az) ( ax + ay + az) (10-3) = -(4x 10-3) (400-300-500) = [-1.39] -2ax+3au-az: The computation is Similar to that
of part in but we change the direction
dw = - q/E ·dl = -4(4000x1-3000y-5000x) = (-2az + 3ay - az) (10-3) =-(4×103)(-800-900-500)=/2.35.J

SAAD BIN TARKS ID 5534 PANOHOU E= 120 20 V/m. Find the incremental charge a distance of 2mm from: P(1,2,3) towned Q(2,1,4) The vector bon dw = - g/Edl = - (50x10-6) [1200p (an ayou (2x10-3) ? Q = tang (2/1) = 63.40 Thus lap.an) Cos (63.4) = 0.447 4 (ap ay) - sin (63.4) = 0.894 Substituting these we obtained Idw= 3.14J/ Compute the value of SG:di for G=

ayax with A (1,-1,2) & P( B, 1,2).

using the path. Straight line segment A (15-1,2) G.dl. Pyda the change in a occurs when moving between band P during which 4-1

SAAD BINTARIQ ID 5534 (G.dl = (2ydx = (2)1dx = 2 the thange change in x occurs: [6.dl = [ 2ydx = [26-Ddx = -2 Repeat problem 4.6 for G=3xyax + Azay Now think are different in that the path does matter JG.dl = [3x y2dx t (3x (x-1)dx+ Gal = 5 3xy2dx + 5 2xdy = 5 1x(x2+ dx + fa(1) dy = 80+2 = 82.